Purpose: The purpose of the present study was to investigate the potential role of 14-3-3sigma in pancreatic ductal adenocarcinoma (PDAC).
Experimental Design: 14-3-3 isoform expression was determined by real-time quantitative PCR in laser capture normal pancreatic ductal cells and pancreatic cancer cells and in 5 pancreatic cancer cell lines. PANC-1 cells, with low levels of 14-3-3sigma, were stably transfected with a human 14-3-3sigma cDNA. Conversely, high endogenous 14-3-3sigma levels in T3M4 cells were suppressed by specific short hairpin RNA. Apoptosis, motility, and invasiveness were studied.
Results: The cancer cells in 7 PDAC samples expressed high levels of 14-3-3sigma mRNA by quantitative PCR when compared with normal pancreatic duct cells. 14-3-3sigma protein levels were high in BxPC3, COLO-357, and T3M4 cells, intermediate in ASPC-1 cells, and low in PANC-1 cells. Most cell lines released detectable amount of 14-3-3sigma into conditioned medium. Overexpression of 14-3-3sigma in PANC-1 cells led to resistance to cisplatinum-induced apoptosis, increased basal migration, and increased invasion in response to epidermal growth factor and insulin-like growth factor-I. By contrast, short hairpin RNA-mediated knockdown of endogenous 14-3-3sigma in T3M4 cells did not alter migration but led to enhanced cisplatinum sensitivity, increased invasiveness in response to epidermal growth factor, and decreased invasiveness in response to insulin-like growth factor-I.
Conclusions: 14-3-3sigma contributes to the chemoresistance of pancreatic cancer cells and exerts cell type-dependent effects on cell migration and invasion. Therefore, strategies aimed at suppressing 14-3-3sigma expression and function may have a therapeutic benefit in subgroups of patients with PDAC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142357 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-08-1366 | DOI Listing |
Am J Cancer Res
December 2024
Graduate Institute of Oncology, National Taiwan University College of Medicine Taipei 10051, Taiwan.
The combination of anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (mAb) and doublet chemotherapy is the standard first-line treatment for patients with wild-type metastatic colorectal cancer (mCRC). Some patients may require secondary resection after first-line treatment. However, it remains unclear whether targeted therapy should be continued after liver resection.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Hangzhou DAC Biotechnology Co., Ltd. No. 369 Qiaoxin Road, Qiantang District, Hangzhou 310018, Zhejiang, China.
Gastric cancer is a common malignant tumor with high incidence and mortality. The overexpression of Human epidermal growth factor receptor 2 (HER2) is associated with increased metastatic potential and poor clinical outcome in gastric cancer. Despite the proven clinical response rates of approved HER2-targeted therapies, including Trastuzumab combined with chemotherapy, their limited long-term clinical benefits and inevitable disease progression still pose significant challenges to the clinical treatment of gastric cancer.
View Article and Find Full Text PDFDespite recent advances, improvements to long-term survival in metastatic carcinomas, such as pancreatic or ovarian cancer, remain limited. Current therapies suppress growth-promoting biochemical signals, ablate cells expressing tumor-associated antigens, or promote adaptive immunity to tumor neoantigens. However, these approaches are limited by toxicity to normal cells using the same signaling pathways or expressing the same antigens, or by the low frequency of neoantigens in most carcinomas.
View Article and Find Full Text PDFUnlabelled: Cancer cachexia, a multifactorial condition resulting in muscle and adipose tissue wasting, reduces the quality of life of many people with cancer. Despite decades of research, therapeutic options for cancer cachexia remain limited. Cachexia is highly prevalent in people with pancreatic ductal adenocarcinoma (PDAC), and many animal models of pancreatic cancer are used to understand mechanisms underlying cachexia.
View Article and Find Full Text PDFWe seek to establish a parsimonious mathematical framework for understanding the interaction and dynamics of the response of pancreatic cancer to the NGC triple chemotherapy regimen (mNab-paclitaxel, gemcitabine, and cisplatin), stromal-targeting drugs (calcipotriol and losartan), and an immune checkpoint inhibitor (anti-PD-L1). We developed a set of ordinary differential equations describing changes in tumor size (growth and regression) under the influence of five cocktails of treatments. Model calibration relies on three tumor volume measurements obtained over a 14-day period in a genetically engineered pancreatic cancer model (KrasLSLG12D-Trp53LSLR172H-Pdx1-Cre).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!