We have studied mitochondrial bioenergetics in HL180 cells (a cybrid line harboring the T14484C/ND6 and G14279A/ND6 mtDNA mutations of Leber hereditary optic neuropathy, leading to an approximately 50% decrease of ATP synthesis) and XTC.UC1 cells (derived from a thyroid oncocytoma bearing a disruptive frameshift mutation in MT-ND1, which impairs complex I assembly). The addition of rotenone to HL180 cells and of antimycin A to XTC.UC1 cells caused fast mitochondrial membrane depolarization that was prevented by treatment with cyclosporin A, intracellular Ca2+ chelators, and antioxidant. Both cell lines also displayed an anomalous response to oligomycin, with rapid onset of depolarization that was prevented by cyclosporin A and by overexpression of Bcl-2. These findings indicate that depolarization by respiratory chain inhibitors and oligomycin was due to opening of the mitochondrial permeability transition pore (PTP). A shift of the threshold voltage for PTP opening close to the resting potential may therefore be the underlying cause facilitating cell death in diseases affecting complex I activity. This study provides a unifying reading frame for previous observations on mitochondrial dysfunction, bioenergetic defects, and Ca2+ deregulation in mitochondrial diseases. Therapeutic strategies aimed at normalizing the PTP voltage threshold may be instrumental in ameliorating the course of complex I-dependent mitochondrial diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M807321200DOI Listing

Publication Analysis

Top Keywords

voltage threshold
8
permeability transition
8
transition pore
8
hl180 cells
8
xtcuc1 cells
8
depolarization prevented
8
mitochondrial diseases
8
mitochondrial
7
respiratory complex
4
complex dysfunction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!