A visually evoked signalling cascade, which begins in the retina, transverses the choroid, and mediates scleral remodelling, is considered to control eye growth. The ubiquitous cytokine TGF-beta has been associated with alterations in ocular growth, where alterations in scleral TGF-beta isoforms mediate the scleral remodelling that results in myopia. However, while the TGF-beta isoforms have been implicated in the scleral change during myopia development, it is unclear whether alterations in retinal and choroidal isoforms constitute part of the retinoscleral cascade. This study characterised the retinal and choroidal TGF-beta isoform profiles and TGF-beta2 activation during different stages of myopia development, as induced by form deprivation, in a mammalian model of eye growth. Using quantitative real-time PCR, the mRNA for all three mammalian isoforms of TGF-beta was detected in tree shrew retina and choroid. Distinct tissue-specific isoform profiles were observed for the retina (TGF-beta1:TGF-beta2:TGF-beta3=20:2085:1) and choroid (TGF-beta1:TGF-beta2:TGF-beta3=16:23:1), which remained constant over the development period under investigation. The active and latent pools of retinal TGF-beta2 were quantified using ELISA with the majority (>94%) of total TGF-beta2 found in the latent form. Unlike previous scleral data showing early and continuous decreases in TGF-beta isoform expression during myopia development, the levels of the three isoforms remained within normal ranges for retinal (TGF-beta1, -14 to +14%; TGF-beta2, -2 to +20%; TGF-beta3, -10 to +26%) and choroidal (TGF-beta1, -19 to +21%; TGF-beta2, -26 to +8%; TGF-beta3, -11 to +28%) tissues during myopia development (induction times of 3h, 7h, 11h, 24h, and 5 days). A 40% decrease in retinal TGF-beta2 activation was observed after 5 days of myopia development, however, there was no functional correlate of altered TGF-beta2 activity, as assessed by the retinal ERG response. Overall, these data highlight the specific nature of TGF-beta isoform expression, which reflects the differences in tissue structure and function. While TGF-beta isoforms are involved in scleral regulation during myopia development in mammals, they do not have a primary role in the retinal and choroidal signals. Thus, the regulation of eye growth via the retinoscleral cascade involves more than one factor, which is likely to be tissue-specific in nature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exer.2008.10.022DOI Listing

Publication Analysis

Top Keywords

myopia development
24
retinal choroidal
16
isoform expression
12
eye growth
12
tgf-beta isoforms
12
tgf-beta isoform
12
tgf-beta
9
retinal
8
choroidal tgf-beta
8
tree shrew
8

Similar Publications

The abnormal growth of irregular new blood vessels into the subretinal or intraretinal space is known as macular neovascularization (MNV). People over 50 are often affected by this disorder, which is typically brought on by age-related macular degeneration. In addition, MNV can be found in people under 50 years of age, who may present primary ophthalmic diseases such as pathological myopia, angioid streaks, traumatic choroidal rupture, or suspected ocular histoplasmosis syndrome.

View Article and Find Full Text PDF

The rising prevalence of myopia is a significant global health concern. Atropine eye drops are commonly used to slow myopia progression in children, but their long-term use raises concern about intraocular pressure (IOP). This study uses SHapley Additive exPlanations (SHAP) to improve the interpretability of machine learning (ML) model predicting end IOP, offering clinicians explainable insights for personalized patient management.

View Article and Find Full Text PDF

Research Tendency and Frontiers of Multifocal Lenses in Myopic Control in the Past Two Decades: A Bibliometric Analysis.

Healthcare (Basel)

January 2025

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.

This study aimed to analyze the research progress on the use of a multifocal lens for myopic control throughout the 21st century, utilizing bibliometric analysis. Publications related to multifocal lenses from 2001 to 2024 were searched on the Web of Science core collection (WoSCC) database. VOSviewer (Version 1.

View Article and Find Full Text PDF

Single-cell transcriptomic profiling of rat iridocorneal angle at perinatal stages: revisiting the development of periocular mesenchyme.

Exp Eye Res

January 2025

Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai 200031, China. Electronic address:

The periocular mesenchyme (POM) gives rise to key structures in the ocular anterior segment, and its malformation leads to anterior segment dysgenesis (ASD) with iridocorneal angle (ICA) abnormalities. However, the transcriptional profile of the POM and the regulatory mechanisms governing cell-fate decision during anterior eye and ICA development remain poorly understood. In this study, we performed a comprehensive time-series analysis by sequencing rat anterior ocular samples collected at five consecutive perinatal stages: embryonic days 16.

View Article and Find Full Text PDF

To investigate the pattern and threshold of physiological growth, defining as axial length (AL) elongation that results in little refraction progression, among Chinese children and teenagers, a total of 916 children aged between 7 and 18 years from a 6-year longitudinal cohort study were included for analysis. Ocular biometry, cycloplegic refraction and demographic data were obtained annually. Physiological growth was calculated based on myopic progression and Gullstrand eye model, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!