Purpose: To quantify the localization accuracy and intrafraction stability of lung cancer patients treated with frameless, four-dimensional (4D) cone beam computed tomography (CBCT)-guided stereotactic body radiotherapy (SBRT) and to calculate and validate planning target volume (PTV) margins to account for the residual geometric uncertainties.
Materials And Methods: Sixty-five patients with small peripheral lung tumors were treated with SBRT without a body frame to 54 Gy in three fractions. For each fraction, three 4D-CBCT scans were acquired: before treatment to measure and correct the time-weighted mean tumor position, after correction to validate the correction applied, and after treatment to estimate the intrafraction stability. Patient-specific PTV margins were computed and subsequently validated using Monte Carlo error simulations.
Results: Systematic tumor localization inaccuracies (1 SD) were 0.8, 0.8, and 0.9 mm for the left-right, craniocaudal, and anteroposterior direction, respectively. Random localization inaccuracies were 1.1, 1.1, and 1.4 mm. Baseline variations were 1.8, 2.9, and 3.0 mm (systematic) and 1.1, 1.5, and 2.0 mm (random), indicating the importance of image guidance. Intrafraction stability of the target was 1.2, 1.2, and 1.8 mm (systematic) and 1.3, 1.5, and 1.8 mm (random). Monte Carlo error simulations showed that patient-specific PTV margins (5.8-10.5 mm) were adequate for 94% of the evaluated cases (2-28 mm peak-to-peak breathing amplitude).
Conclusions: Frameless SBRT can be safely administered using 4D-CBCT guidance. Even with considerable breathing motion, the PTV margins can safely be kept small, allowing patients with larger tumors to benefit from the advantages of SBRT. In case bony anatomy would be used as a surrogate for tumor position, considerably larger PTV margins would be required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2008.08.004 | DOI Listing |
Eur Urol Open Sci
January 2025
Department of Urology, University of California-Irvine Medical Center, Orange, CA, USA.
Background And Objective: Positive surgical margins (PSMs) following radical prostatectomy (RP) have been seen as inherently unfavorable. However, a large international multi-institutional study recently revealed that unifocal PSMs (UPSMs) had no impact on prostate cancer-specific mortality (PCSM), whereas multifocal PSMs (MPSMs) did. Our aim was to assess the relative impact of PSMs versus percentage tumor volume (PTV) on PCSM.
View Article and Find Full Text PDFClin Oncol (R Coll Radiol)
December 2024
Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark; Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.
Aims: Determining appropriate PTV margins for SBRT of liver metastases is a non-trivial task, especially with motion management included. The widely used analytical van Herk margin recipe (van Herk et al., 2000) could break down due to (i) a low number of fractions, (ii) non-Gaussian errors, or (iii) non-homogenous dose distributions.
View Article and Find Full Text PDFAdv Radiat Oncol
February 2025
Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas.
Purpose: Daily online adaptive radiation therapy (oART) opens the opportunity to treat gastric mucosa-associated lymphoid tissue (MALT) lymphoma with a reduced margin. This study reports our early experience of cone beam computed tomography (CBCT)-based daily oART treating gastric MALT lymphoma with breath-hold and reduced margins.
Methods And Materials: Ten patients were treated on a CBCT-based oART system.
Strahlenther Onkol
January 2025
Department of Radiation Oncology, Radboud university medical center, Nijmegen, The Netherlands.
Purpose: This study focused on reducing the margin for prostate cancer treatment using magnetic resonance imaging-guided radiotherapy by investigating the intrafractional motion of the prostate and different motion-mitigation strategies.
Methods: We retrospectively analyzed intrafractional prostate motion in 77 patients with low- to intermediate-risk prostate cancer treated with five fractions of 7.25 Gy on a 1.
J Med Imaging Radiat Oncol
January 2025
Department of Radiation Oncology, Townsville University Hospital, Townsville, Queensland, Australia.
Introduction: Prostate motion during external beam radiotherapy (EBRT) is common and typically managed using fiducial markers and cone beam CT (CBCT) scans for inter-fractional motion correction. However, real-time intra-fractional motion management is less commonly implemented. This study evaluated the extent of intra-fractional prostate motion using transperineal ultrasound (TPUS) and examined the impact of treatment time on prostate motion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!