Identification and expression of a novel marsupial cathelicidin from the tammar wallaby (Macropus eugenii).

Vet Immunol Immunopathol

Department of Biological Sciences, Division of Environmental and Life Sciences, Macquarie University, NSW, Australia.

Published: February 2009

Cathelicidins are important components of the innate immune system and have been identified in skin and epithelia of a range of mammals. In this study molecular techniques, including RACE-PCR, were used to identify the full cDNA sequence of a cathelicidin gene, MaeuCath8, from the Australian marsupial, the tammar wallaby, Macropus eugenii. This cathelicidin was not homologous to other such genes previously isolated from a tammar wallaby mammary gland EST library, however, it did contain 4 conserved cysteine residues which characterise the pre-propeptide and had 80% identity with a previously isolated bandicoot cathelicidin. Reverse transcriptase-PCR established the expression profile of MaeuCath8 in a range of tissues, including spleen, thymus, gastrointestinal tract, skin and liver, of the tammar wallaby from birth to adulthood. Expression of MaeuCath8 was observed in spleen and gastrointestinal tract of newborn animals and was observed in most tissues by 7 days post-partum. The results indicate that pouch young could synthesize their own antimicrobial peptides from an early age suggesting that this ability most likely plays a role in protecting the pouch young from infection prior to the development of immunocompetence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2887693PMC
http://dx.doi.org/10.1016/j.vetimm.2008.10.319DOI Listing

Publication Analysis

Top Keywords

tammar wallaby
16
wallaby macropus
8
macropus eugenii
8
gastrointestinal tract
8
pouch young
8
identification expression
4
expression novel
4
novel marsupial
4
cathelicidin
4
marsupial cathelicidin
4

Similar Publications

Article Synopsis
  • - Bisphenol-A (BPA), a common chemical in plastics, negatively impacts fertility, but its specific effects on early ovarian development in mammals, particularly marsupials like the tammar wallaby, are not well understood.
  • - The study observed key ovarian development markers at specific intervals from birth to 10 days post-partum, revealing that ovarian differentiation begins around days 2-4, with significant changes in gene expression and protein localization.
  • - BPA exposure during the critical early days of development suppressed normal ovarian differentiation, inhibiting the formation of ovarian structures and reducing the expression of important differentiation genes at day 10 post-partum.
View Article and Find Full Text PDF
Article Synopsis
  • The MAPK genes are important for gonadal differentiation in eutherian mammals, and this study investigates their role in marsupials, specifically the tammar wallaby.
  • The researchers used a MAPK inhibitor, SB202190, to study its effects on gonads and found it reduced levels of key genes SOX9 and AMH in XY gonads.
  • The study concludes that the MAPK pathway is involved in testis differentiation in marsupials, similar to its role in eutherian mammals.
View Article and Find Full Text PDF

The extension of mammalian pregnancy required taming inflammation: Independent evolution of extended placentation in the tammar wallaby.

Proc Natl Acad Sci U S A

October 2024

Department of Biological Sciences, School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.

Article Synopsis
  • The first mammals that gave birth to live young had short pregnancies that involved some inflammation between the mother and the baby.
  • Many marsupials, like kangaroos and wallabies, still keep this short pregnancy style, but their way of handling inflammation is different from other mammals called eutherians.
  • In wallabies, they don't show a strong inflammatory reaction at the start of pregnancy, allowing them to have a longer gestation process compared to other marsupials.
View Article and Find Full Text PDF

PRKACB is a novel imprinted gene in marsupials.

Epigenetics Chromatin

September 2024

School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.

Article Synopsis
  • The study talks about a special way some genes work differently depending on whether they come from the mom or dad, called genomic imprinting, which is found in certain mammals like koalas and other marsupials.
  • Researchers found a specific area in the gene PRKACB that showed this imprinting by checking how a special chemical called methylation was added to it.
  • They discovered that in two types of marsupials, the gene from the mom was modified differently than from the dad, showing that PRKACB is a new gene that behaves this way in marsupials, which might be important for its function in these animals.
View Article and Find Full Text PDF
Article Synopsis
  • X chromosome inactivation (XCI) is an epigenetic phenomenon where one X chromosome in females is silenced, differing between eutherian (random silencing) and marsupial mammals (always paternal silencing).
  • In eutherians, the inactive X shows high DNA methylation at key sites, while marsupials have lower methylation levels on the paternal X.
  • The study focused on the tammar wallaby's X chromosome during sperm development, finding that the paternal X has a DNA methylation profile similar to the inactive X in female tissues, suggesting it may serve as an imprint for paternal XCI in marsupials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!