Background: Febrile respiratory illness (FRI) has a high impact on public health and global economics and poses a difficult challenge for differential diagnosis. A particular issue is the detection of genetically diverse pathogens, i.e. human rhinoviruses (HRV) and enteroviruses (HEV) which are frequent causes of FRI. Resequencing Pathogen Microarray technology has demonstrated potential for differential diagnosis of several respiratory pathogens simultaneously, but a high confidence design method to select probes for genetically diverse viruses is lacking.
Results: Using HRV and HEV as test cases, we assess a general design strategy for detecting and serotyping genetically diverse viruses. A minimal number of probe sequences (26 for HRV and 13 for HEV), which were potentially capable of detecting all serotypes of HRV and HEV, were determined and implemented on the Resequencing Pathogen Microarray RPM-Flu v.30/31 (Tessarae RPM-Flu). The specificities of designed probes were validated using 34 HRV and 28 HEV strains. All strains were successfully detected and identified at least to species level. 33 HRV strains and 16 HEV strains could be further differentiated to serotype level.
Conclusion: This study provides a fundamental evaluation of simultaneous detection and differential identification of genetically diverse RNA viruses with a minimal number of prototype sequences. The results demonstrated that the newly designed RPM-Flu v.30/31 can provide comprehensive and specific analysis of HRV and HEV samples which implicates that this design strategy will be applicable for other genetically diverse viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2607299 | PMC |
http://dx.doi.org/10.1186/1471-2164-9-577 | DOI Listing |
Mycotoxin Res
January 2025
ARS, National Biological Control Laboratory, 59 Lee Road, Stoneville, MS, 38776, USA.
Aflatoxin contamination of corn can occur when developing kernels are infected by the plant pathogen Aspergillus flavus. One route of infection is from airborne conidia. We executed a series of experiments within the corn canopy during two growing seasons and in two states to document the abundance and dynamics of the airborne A.
View Article and Find Full Text PDFMar Biotechnol (NY)
January 2025
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China.
In China, the red swamp crayfish (Procambarus clarkii), a notorious invasive species, has become an important economic freshwater species. In order to compare the genetic diversity and population structure of crayfish from northern and southern China, we collected 60 crayfish individuals from 4 crayfish populations in northern China and 2 populations in southern China for sequencing using the 2b-RAD technique. Additionally, the whole genome sequence information obtained by 2b-RAD of 90 individuals from 2 populations in northern China and 7 populations in southern China were downloaded from NCBI.
View Article and Find Full Text PDFSci China Life Sci
January 2025
State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
Epigenetic mechanisms are integral to plant growth, development, and adaptation to environmental stimuli. Over the past two decades, our comprehension of these complex regulatory processes has expanded remarkably, producing a substantial body of knowledge on both locus-specific mechanisms and genome-wide regulatory patterns. Studies initially grounded in the model plant Arabidopsis have been broadened to encompass a diverse array of crop species, revealing the multifaceted roles of epigenetics in physiological and agronomic traits.
View Article and Find Full Text PDFFEMS Microbiol Ecol
January 2025
Ecology and Genetics Research Unit, PO Box 3000, University of Oulu, FI-90014 Oulu, Finland.
The physical and chemical properties of wild berry fruits change dramatically during development, and the ripe berries host species-specific endophytic communities. However, the development of fungal endophytic communities during berry ripening is unknown. We studied bilberries (Vaccinium myrtillus L.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.
This study addresses the challenging task of identifying viruses within metagenomic data, which encompasses a broad array of biological samples, including animal reservoirs, environmental sources, and the human body. Traditional methods for virus identification often face limitations due to the diversity and rapid evolution of viral genomes. In response, recent efforts have focused on leveraging artificial intelligence (AI) techniques to enhance accuracy and efficiency in virus detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!