Bone formation occurs in vivo in response to mechanical stimuli, but the signaling pathways involved remain unclear. The ability of bone cells to communicate with each other in the presence of an applied load may influence the overall osteogenic response. The goal of this research was to determine whether inhibiting cell-to-cell gap junctional communication between bone-forming cells would affect the ensemble cell response to an applied mechanical stimulus in vitro. In this study, we investigated the effects of controlled oscillatory fluid flow (OFF) on osteoblastic cells in the presence and the absence of a gap-junction blocker. MC3T3-E1 Clone 14 cells in a monolayer were exposed to 2 h of OFF at a rate sufficient to create a shear stress of 20 dyne/cm(2) at the cell surface, and changes in steady-state mRNA levels for a number of key proteins known to be involved in osteogenesis were measured. Of the five proteins investigated, mRNA levels for osteopontin (OPN) and osteocalcin were found to be significantly increased 24 h postflow. These experiments were repeated in the presence of 18 beta-glycyrrhetinic acid (BGA), a known gap-junction blocker, to determine whether gap-junction intercellular communication is necessary for this response. We found that the increase in OPN mRNA levels is not observed in the presence of BGA, suggesting that gap junctions are involved in the signaling process. Interestingly, enzyme linked immunosorbent assay data showed that levels of secreted OPN protein increased 48 h postflow and that this increase was unaffected by the presence of intact gap junctions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.3005201 | DOI Listing |
Front Cell Neurosci
January 2025
The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.
The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
Auditory neuropathy spectrum disorder (ANSD) is an auditory dysfunction disorder characterized by impaired speech comprehension. Its etiology is complex and can be broadly categorized into genetic and non-genetic factors. mutation is identified as a causative factor in ANSD.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
Here we characterize seven Cx30.3 gene variants (R22H, S26Y, P61R, C86S, E99K, T130M and M190L) clinically associated with the rare skin disorder erythrokeratodermia variabilis et progressiva (EKVP) in tissue-relevant and differentiation-competent rat epidermal keratinocytes (REKs). We found that all variants, when expressed alone or together with wildtype (WT) Cx30.
View Article and Find Full Text PDFPhytomedicine
December 2024
Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, Coimbra 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
Background: Pulmonary Arterial Hypertension (PAH) is characterized by pulmonary vascular remodelling, often associated with disruption of BMPR2/Smad1/5 and BMPR2/PPAR-γ signalling pathways that ultimately lead to right ventricle failure. Disruption of intercellular junctions and communication and a pro-angiogenic environment are also characteristic features of PAH. Although, current therapies improve pulmonary vascular tone, they fail to tackle other key pathological features that could prevent disease progression.
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
Sterile alpha and Toll/interleukin-1 receptor motif containing 1 (SARM1), a nicotinamide adenine dinucleotide (NAD)-utilizing enzyme, mediates axon degeneration (AxD) in various neurodegenerative diseases. It is activated by nicotinamide mononucleotide (NMN) to produce a calcium messenger, cyclic ADP-ribose (cADPR). This activity is blocked by elevated NAD level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!