Previous studies on the sound attenuation in particle-laden flows under Stokesian drag and conduction-controlled heat transfer have been extended to accommodate the nonlinear drag and heat transfer. It has been shown that for large particle-to-fluid density ratio, the particle Reynolds number bears a cubic relationship with omegatau(d) (where omega is the circular frequency and tau(d) is the Stokesian particle relaxation time). This dependence leads to the existence of a peak value in the linear absorption coefficient occurring at a finite value of omegatau(d). Comparison of the predictions with the test data for the spectral attenuation of sound with water injection in a perfectly expanded supersonic air jet shows a satisfactory trend of the theory accounting for nonlinear particle relaxation processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.2987463 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!