J Biomech Eng
Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA.
Published: December 2008
Cyclic mechanical loading of articular cartilage results in a complex biomechanical environment at the scale of the chondrocytes that strongly affects cellular metabolic activity. Under dynamic loading conditions, the quantitative relationships between macroscopic loading characteristics and solid and fluid mechanical variables in the local cellular environment are not well understood. In this study, an axisymmetric multiscale model of linear biphasic cell-matrix interactions in articular cartilage was developed to investigate the cellular microenvironment in an explant subjected to cyclic confined compressive loading. The model was based on the displacement-velocity-pressure (u-v-p) mixed-penalty weighted residual formulation of linear biphasic theory that was implemented in the COMSOL MULTIPHYSICS software package. The microscale cartilage environment was represented as a three-zone biphasic region consisting of a spherical chondrocyte with encapsulating pericellular matrix (PCM) that was embedded in a cylindrical extracellular matrix (ECM) subjected to cyclic confined compressive loading boundary conditions. Biphasic material properties for the chondrocyte and the PCM were chosen based on previous in vitro micropipette aspiration studies of cells or chondrons isolated from normal or osteoarthritic cartilage. Simulations performed at four loading frequencies in the range 0.01-1.0 Hz supported the hypothesized dual role of the PCM as both a protective layer for the cell and a mechanical transducer of strain. Time varying biphasic variables at the cellular scale were strongly dependent on relative magnitudes of the loading period, and the characteristic gel diffusion times for the ECM, the PCM, and the chondrocyte. The multiscale simulations also indicated that axial strain was significantly amplified in the range 0.01-1.0 Hz, with a decrease in amplification factor and frequency insensitivity at the higher frequencies. Simulations of matrix degradation due to osteoarthritis indicated that strain amplification factors were more significantly altered when loss of matrix stiffness was exclusive to the PCM. The findings of this study demonstrate the complex dependence of dynamic mechanics in the local cellular environment of cartilage on macroscopic loading features and material properties of the ECM and the chondron.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2768281 | PMC |
http://dx.doi.org/10.1115/1.2978991 | DOI Listing |
Multi-cycle THz-driven electron compression and focusing in dielectric-loaded waveguides (DLWs) offer a compact solution for precise ultrafast electron beam control. However, practical implementation often suffers from dephasing effects due to fabrication tolerances. Here, we investigate the dynamics of electron beam control in the non-velocity-matched interactions between electron beams and THz waves within the DLWs, revealing the relationship between velocity mismatch and the THz energy required for effective electron manipulation.
View Article and Find Full Text PDFSci Rep
March 2025
Department of Civil Engineering, Engineering College, University of Kerbala, Karbala, Iraq.
Stabilizing and improving weak and poorly graded soils in road construction projects is a widely used and highly interesting technology. This research study utilizes paper sludge ash (PSA) residues as a geopolymer waste material to stabilize loose and poorly graded sands (SP), improve mechanical properties, and support sustainable pavement development. Geotechnical tests using the unconfined compressive strength test (UCS), Young's modulus (Es), California bearing ratio (CBR), and a direct shear test (DST) assessed the performance and strength development of geopolymer-stabilized soil.
View Article and Find Full Text PDFSci Rep
March 2025
Shaanxi Institute of Architecture Science Co., Ltd., Xi'an, 710082, China.
The weakening of loess structure under hydro-mechanical effect is an important reason for collapsible deformation of loess. Therefore, when establishing the constitutive model of unsaturated loess, it is necessary to consider the influence of loess structure to truly reflect the mechanical characteristics. A modified elastoplastic damage structural constitutive model (MEDSCM) is proposed for unsaturated Q undisturbed loess based on the modified Barcelona basic model (MBBM), assuming that the yield stress of undisturbed loess is a coupling of remolded loess and structure, and adopting the non-associated flow rule.
View Article and Find Full Text PDFAnn Biomed Eng
March 2025
PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy.
Background: Spinal cord compression in patients with vertebral metastases often requires surgical decompression with spinal fixation. Recent studies reported increased implant failures due to mechanical complications, raising concerns about current clinical practices. Long-segment fixation (Lf) is commonly employed to enhance mechanical stability and reduce the severity of pedicle screw failure.
View Article and Find Full Text PDFInt J Biol Macromol
March 2025
Biomaterials Laboratory, Medical and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18060-030, Brazil; Post-graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba 18052-780, SP, Brazil; Post-graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, PUC-SP, Sorocaba, SP 18060-030, Brazil.
Hydrogels for biomedical applications have been widely studied once they are able to enhance the wound-healing process, as well as facilitate the controlled release and loading of drugs. In this context, Pluronic F127 (PF127) has a major role as it was shown to have exceptional versatility, once it holds unique gelation properties, as it is thermoreversible and is liquid in lower temperatures, and changes to gel in higher temperatures. Moreover, the gelation behavior of PF127 is influenced by its concentration and can be further modulated by incorporating different compounds, including drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.