A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of charge transport in mercaptosuccinic acid-passivated gold clusters. | LitMetric

Investigation of charge transport in mercaptosuccinic acid-passivated gold clusters.

J Chem Phys

Department of Material Science, Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.

Published: November 2008

Investigation of electric charge transport in well-dried thin films of mercaptosuccinic acid-protected gold clusters having different cluster core sizes by a four-probe methodology revealed a novel behavior of metalliclike to semiconductor crossover with an increase in temperature. The systems were found comprising of minor metallic and major insulating networks. At low temperatures, the monolayer-protected clusters (MPCs) were found to show a metalliclike nature with a linear increase in resistivity with an increase in temperature. The temperature coefficient of resistivity decreases and approaches that of bulk gold with an increase in the size of the cluster cores of the MPCs. This behavior was correlated with the phonon softening mechanism to the electron scattering and was explained by a simple model with a spherical layer lattice vibration. High temperature region was marked by a sharp decrease in resistivity due to thermally activated nearest neighbor electron hopping process, which follows either Arrhenius or Abeles activation models. We believe that this is the first report showing a maximum in the resistivity of any MPC with temperature as also describing the effect of phonon softening on temperature coefficient of resistivity from charge transport measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3010887DOI Listing

Publication Analysis

Top Keywords

charge transport
12
gold clusters
8
increase temperature
8
temperature coefficient
8
coefficient resistivity
8
phonon softening
8
temperature
6
resistivity
5
investigation charge
4
transport mercaptosuccinic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!