Homogeneous nucleation rate measurements in supersaturated water vapor.

J Chem Phys

Laboratory of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals AS CR, v.v.i., Rozvojova 135, CZ-16502 Prague, Czech Republic.

Published: November 2008

The rate of homogeneous nucleation in supersaturated vapors of water was studied experimentally using a thermal diffusion cloud chamber. Helium was used as a carrier gas. Our study covers a range of nucleation rates from 3x10(-1) to 3x10(2) cm(-3) s(-1) at four isotherms: 290, 300, 310, and 320 K. The molecular content of critical clusters was estimated from the slopes of experimental data. The measured isothermal dependencies of nucleation rate of water on saturation ratio were compared with the prediction of the classical theory of homogeneous nucleation, the empirical prediction of Wolk et al. [J. Chem. Phys. 117, 10 (2002)], the scaled model of Hale [Phys. Rev. A 33, 4156 (1986)], and the former nucleation onset data.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3000629DOI Listing

Publication Analysis

Top Keywords

homogeneous nucleation
12
nucleation rate
8
nucleation
5
rate measurements
4
measurements supersaturated
4
supersaturated water
4
water vapor
4
vapor rate
4
rate homogeneous
4
nucleation supersaturated
4

Similar Publications

Commercial 3D zinc foam anodes with high deposition space and ion permeation have shown great potential in aqueous ion batteries. However, the local accumulated stress from its high-curvature surface exacerbates the Zn dendrite issue, leading to poor reversibility. Herein, we have employed zincophilic N-doped carbon@Sn composites (N-C@Sn) as nano-fillings to effectively release the local stress of high curvature surface of 3D Zn foams toward dendrite-free anode in aqueous zinc ion battery (AZIB).

View Article and Find Full Text PDF

Revealing the Principles of Confining Electroplated Lithium beneath the CVD Grown Single Layer 2D Materials.

Small

January 2025

MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Owing to the nanoscale thickness, excellent mechanical and chemical stabilities, 2D materials including graphene and hexagonal boron nitride have emerged as promising artificial solid electrolyte interphase (SEI) candidates for lithium metal batteries. However, whether the implementation of 2D materials is beneficial to electrochemical performance remains controversial, and the key to confining the electroplated Li beneath the 2D materials remains elusive. Here, a nanocrystalline graphene (NG) film is synthesized on high-carbon Cu and the Li plating/stripping behavior on Cu grown with different 2D materials is investigated.

View Article and Find Full Text PDF

Rethinking primary particulate matter: Integrating filterable and condensable particulate matter in measurement and analysis.

Sci Total Environ

January 2025

Particle Pollution Research and Management Center, Incheon 21999, Republic of Korea; Department of Environmental Engineering, Inha University, Incheon 22212, Republic of Korea. Electronic address:

The current definition of primary particulate matter (PM) encompasses filterable PM (FPM) and condensable PM (CPM), which are evaluated using two distinct conventional measurement methods: cooling and dilution. While the cooling method exclusively considers the homogenous formation of CPM, the dilution method, closer to real-world conditions, neglects FPM characterization. To overcome this limitation, we propose a doubled-dilution system that enables the parallel characterization of both FPM and primary PM without diverting FPM from the CPM formation pathway.

View Article and Find Full Text PDF

Comparative Study of Polymer Globules and Liquid Droplets in Poor Solvents: Effects of Cosolvents and Solvent Quality.

J Phys Chem B

January 2025

Department of Chemical Engineering, IIT Gandhinagar, Gandhinagar, Gujarat 382055, India.

We compare the structures of polymer globules, composed of flexible polymer chains, with liquid droplets made of nonbonded monomers of the same polymer in poor solvents. This comparison is performed in three different poor solvents, with and without the addition of cosolvents. Molecular dynamics simulations are used to analyze the properties of the polymer globules, while semigrand canonical Monte Carlo simulations are used to form metastable liquid droplets of nonbonded monomers through homogeneous nucleation in the same solvents.

View Article and Find Full Text PDF

Background: Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.

Objective: Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!