We present the Born-Oppenheimer dynamics of the depletion reaction NH(a(1)Delta)+H(')-->N((2)D)+H(2) and of the exchange one NH(a(1)Delta)+H(')-->NH(')(a(1)Delta)+H, using the real wavepacket and flux methods and an accurate NH(2)(A (2)A(1)) surface. We report coupled-channel reaction probabilities, cross sections, and rate constants, taking into account Coriolis couplings. Because the surface is barrierless and strongly bound, probabilities have small centrifugal thresholds and present sharp and large resonances, associated with long-lived collision complexes. Large J's enhance the high-energy reactivity and favor the exchange reaction, owing to the negative Coriolis couplings, and to K that inhibits depletion but not exchange. Coriolis couplings are important in the collision complexes, and the centrifugal sudden approximation thus gives large errors. Cross sections are large at the threshold and minimal at intermediate collision energies and increase moderately at larger energies. Exchange is preferred, and both reactions are inhibited by the NH rotational excitation. Finally, the present rate constants are in good agreement with previous experimental and semiclassical results.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3005653DOI Listing

Publication Analysis

Top Keywords

coriolis couplings
12
2a1 surface
8
cross sections
8
rate constants
8
collision complexes
8
quantum dynamics
4
dynamics nha1delta+h
4
nha1delta+h reactions
4
reactions nh2
4
nh2 2a1
4

Similar Publications

Photofragmentation and fragment analysis; Coriolis interactions in excited states of CH.

Phys Chem Chem Phys

November 2024

Science Faculty, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.

Methyl radicals in their ground state (CH(X)) were created and excited by two- and one- color excitation schemes for CHBr and CHI, respectively, to record (2+1) REMPI spectra of CH for resonant transitions to the Rydberg states CH**(pA); = 3, 4. Various new and previously observed vibrational bands were identified and analyzed to gain energetic information for the Rydberg states. Particular emphasis was placed on analysis of the rotational structured spectra centered at 70 648 and 60 700 cm, due to transitions from to and for both Rydberg states, respectively.

View Article and Find Full Text PDF

Introduction: Habituation to motion has therapeutic applications for motion sickness desensitization and rehabilitation of patients with vestibular disease. Less attention has been devoted to the opposite process: sensitization.

Methods: Subjects (N = 50) were randomly allocated to four sequences: Baseline visual stimulus; then 15 min of time gap; cross-coupled motion (C-C) or a Control condition; then a time gap of 15 min or 2 h; then a retest visual stimulus.

View Article and Find Full Text PDF

An improved global potential energy surface (PES) for the electronic ground state of the HeLiH+ system is reported. The data points are calculated at the full configuration-interaction level of theory and extrapolated to the complete basis set limit. The fitting procedure implements a combination of neural network and Aguado-Paniagua functional forms to fit the ab initio data points.

View Article and Find Full Text PDF

Quantum State-Dependent Fragmentation Dynamics of DS Molecules Following Excitation at Wavelengths ∼ 129.1 and ∼ 139.1 nm.

J Phys Chem A

September 2024

State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

The first high-resolution translational spectroscopy studies of D atom photoproducts following excitation to the Rydberg states of DS are reported. Excitation at wavelengths λ ∼ 139.1 nm reveals an unusual 'inverse' isotope effect; the B(3←2) Rydberg state of DS predissociates much faster than its counterpart in HS.

View Article and Find Full Text PDF

A combined analysis of millimeter-wave (70-700 GHz) and rotationally resolved infrared (400-1200 cm) spectra of the ground state and seven fundamental vibrational modes of 1-1,2,4-triazole is reported. While the lowest-energy vibrationally excited state (ν) is well-treated using a single-state distorted-rotor Hamiltonian, the second (ν) and third (ν) vibrationally excited states are involved in strong -type Coriolis coupling and require an appropriate two-state Hamiltonian. The oblate nature of 1-1,2,4-triazole is sufficiently close to the oblate symmetric-top limit that the analysis requires the use of A-reduced, sextic centrifugally distorted-rotor Hamiltonian models in the I representation in order to achieve low σ values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!