Vibrational energy transfer between I2(B (3)Pi(0u)+, nu' = 21) and He at very low temperatures: impulsive versus complex formation mechanisms assisted by tunneling through the centrifugal barrier.

J Chem Phys

Centro Laser de Ciencias Moleculares, INF1QC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Pabellon Argentina, Ciudad Universitaria, 5000 Cordoba, Argentina.

Published: October 2008

The temperature dependence of the state-to-state vibrational relaxation rate constant (k(nu)(21-Delta nu)) for collisions between I(2)(B,nu(')=21) and He at very low kinetic energies was studied. The fluorescence from I(2)(B,nu(')=21-Delta nu(')) with Delta nu(')=1-5 indicates that in the temperature range of 0.6-8.2 K these states are populated by only one collision with He. The behavior of k(nu)(21-Delta nu) with temperature can be divided into two groups. The group with quantum changes Delta nu(')=1-3 shows scattering resonances in the low temperature region, with a general monotonical decrease of the rate constant with temperature, suggesting the importance of van der Waals interactions. This behavior is supported by the calculation of the probability of tunneling through the centrifugal barriers. For collisions in which 4-5 quanta are lost in a single event, there are no evidences of scattering resonances and the values of the relaxation rate constants could be determined only at the highest temperatures of this study. This suggests that relaxation occurs via impulsive collisions. The branching ratios for each channel are also temperature dependent and this behavior also suggests that the energy transfer mechanism changes with Delta nu(').

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2987706DOI Listing

Publication Analysis

Top Keywords

energy transfer
8
tunneling centrifugal
8
relaxation rate
8
rate constant
8
changes delta
8
scattering resonances
8
temperature
6
vibrational energy
4
transfer i2b
4
i2b 3pi0u+
4

Similar Publications

Photoassisted lithium-sulfur (Li-S) batteries offer a promising approach to enhance the catalytic transformation kinetics of polysulfide. However, the development is greatly hindered by inadequate photo absorption and severe photoexcited carriers recombination. Herein, a photonic crystal sulfide heterojunction structure is designed as a bifunctional electrode scaffold for photoassisted Li-S batteries.

View Article and Find Full Text PDF

Enhancing Activation Energy Predictions under Data Constraints Using Graph Neural Networks.

J Chem Inf Model

January 2025

Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.

Accurately predicting activation energies is crucial for understanding chemical reactions and modeling complex reaction systems. However, the high computational cost of quantum chemistry methods often limits the feasibility of large-scale studies, leading to a scarcity of high-quality activation energy data. In this work, we explore and compare three innovative approaches (transfer learning, delta learning, and feature engineering) to enhance the accuracy of activation energy predictions using graph neural networks, specifically focusing on methods that incorporate low-cost, low-level computational data.

View Article and Find Full Text PDF

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking.

View Article and Find Full Text PDF

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!