The origins of nonadditivity in the following groups of metal trimers are examined: alkali earth metals of the IIA group (Be, Mg, and Ca), Zn as a transition metal analog of this group, spin-polarized alkali metals from IA group (Li, Na, K), and the spin-polarized Cu as its transition metal analog. The nonadditive interactions in these trimers are analyzed using the following hierarchy of approximations: the Heitler-London, self-consistent field (SCF), and correlated levels of theory. The exchange nonadditivity, which is included at the Heitler-London level, constitutes a bulk of nonadditive interactions in these systems in their equilibrium structures. The SCF treatment reveals some unphysical characteristics. At the post-SCF levels of theory the multireference character of the wave function increases from atom to dimer to trimer. The role of configurations involving excitations ns-np increases in this sequence and it is the genuine nonadditive effect. There is also a dramatic change in the characteristics of the excited states upon formation of clusters. We use the parameters of these excited states to predict which complexes are bound by the unusually strong nonadditive interactions and which are not.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2982801 | DOI Listing |
J Phys Condens Matter
January 2025
Biozentrum, University of Basel, Spitalstrasse 41, Basel, Basel-Stadt, 4056, SWITZERLAND.
Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
Growth heterosis is crucial for Populus deltoides breeding, a key industrial-timber and ecological-construction tree species in temperate regions. However, the molecular mechanisms underlying carbon (C)-nitrogen (N) metabolism coordination in regulating growth heterosis remain unclear. Herein high-hybrids of P.
View Article and Find Full Text PDFGeroscience
January 2025
Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Erwin Mill Building, 2024 W. Main St, Durham, NC, 27705, USA.
Genetics is the second strongest risk factor for Alzheimer's disease (AD) after age. More than 70 loci have been implicated in AD susceptibility so far, and the genetic architecture of AD entails both additive and nonadditive contributions from these loci. To better understand nonadditive impact of single-nucleotide polymorphisms (SNPs) on AD risk, we examined individual, joint, and interacting (SNPxSNP) effects of 139 and 66 SNPs mapped to the BIN1 and MS4A6A AD-associated loci, respectively.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China.
Van der Waals interaction in multilayer structures was predicted to be of many-body character, almost in parallel with the establishment of Lifshitz theory. However, the diminishing interaction between layers separated by a finite-thickness intermediate layer prevents experimental verification of the many-body nature. Here we verify the substrate contribution at the adhesion between the atomic force microscopy tip and the supported graphene, by taking advantage of the atomic-scale proximity of two objects separated by graphene.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
Transcription factor binding sites (TFBSs) are important sources of evolutionary innovations. Understanding how evolution navigates the sequence space of such sites can be achieved by mapping TFBS adaptive landscapes. In such a landscape, an individual location corresponds to a TFBS bound by a transcription factor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!