The nearly linear relationship between hydrogen-bond strength at the CCSD(T)/Aug-cc-pVTZ level and the electron density at the bond critical point in the atoms-in-molecules theory provides a practical means of calculating the hydrogen-bond strength in liquid water. A statistical analysis of the hydrogen-bonds obtained from Car-Parrinello molecular dynamics simulations shows that the strengths of hydrogen bonds in liquid water conform to a Gaussian distribution. Considering supercooled (250 K) water to have a fully coordinated (icelike) local tetrahedral configuration, we show that the local structure of liquid water is partly distorted tetrahedral in normal liquid water and even in superheated water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2985605 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!