Intramolecular vibrational redistribution (IVR) from the terminal acetylene mode nu(HC) has been studied for four molecules: H-C[Triple Bond]C-CH(3) (propyne), H-C[Triple Bond]C-CH(2)Cl (propargyl chloride), H-C[Triple Bond]C-CH(2)OH (propargyl alcohol), and H-C[Triple Bond]C-CH(2)NH(2) (propargyl amine). The experiments were performed with the room-temperature gases. The transition mid R:0-->mid R:1 in the mode nu(HC) was pumped by a short laser pulse. Anti-Stokes spontaneous Raman scattering was used as a probe. The measured parameters were the de-excitation rate W and the dilution factor sigma defined as the relative level of the residual energy in the nu(HC) mode at long pump-probe delay times. The pair of these values {W,sigma} allowed us to determine the density rho(eff) of those vibrational-rotational states, which are involved in IVR from state mid R:1. For two molecules, HCCCH(3) and HCCCH(2)Cl, the experimental results were consistent with the suggestion that all close vibrational-rotational states with the same total angular momentum J and symmetry participate in the IVR regardless of the other rotator quantum number K (in the case of HCCCH(3)) or K(a) (in the case of HCCCH(2)Cl) and the vibrational quantum numbers as well. For the other two molecules, HCCCH(2)OH and HCCCH(2)NH(2), this effect was also present, yet the experimental results revealed certain restrictions. We have obtained a satisfactory theoretical fit with the assumption that the low-frequency torsion vibration of the hydrogen atom in the hydroxyl group (in the case of HCCCH(2)OH) or hydrogen atoms in the amine group (in the case of HCCCH(2)NH(2)) does not participate in the IVR. This assumption can be treated as a challenge to future studies of these molecules by high-resolution spectroscopy and various double-resonance and pump-probe techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2977982 | DOI Listing |
Nano Lett
January 2025
Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
Covalent-organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π-π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF).
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Novosibirsk State University, Pirogov str. 1, Novosibirsk 630090, Russian Federation.
Nine metal complexes formed by three symmetric β-diketonates (, acetylacetonate (), 1,1,1,3,3,3-hexafluoro-acetylacetonate (), and 2,2,6,6-tetramethylheptane-3,5-dionate ()) and three metal ions (with three different coordination geometries, , Be - tetrahedral, Cu - square planar, and Pb - "swing" square pyramidal) were investigated. The study combines structural analyses, vibrational spectroscopic techniques, and quantum chemical calculations with the aim of bridging crystal structure, electronic structure, molecular topology, and far-infrared (FIR) spectroscopic characteristics. The effect of intramolecular interactions on the structural, electronic, and spectroscopic features is the center of this study.
View Article and Find Full Text PDFIn this study, we investigated in detail the regulation mechanism of electron transfer under laser-induced breakdown (LIB) on weak O-D stimulated Raman scattering (SRS) in DMSO-DO solutions. Significantly, the Raman activity of O-D vibrations was greatly enhanced by two orders of magnitude due to electron transfer in DMSO molecules. Density functional theory (DFT) calculations showed that the O-D Raman activity was significantly enhanced in the DMSO-DO dimer compared to the DO dimer.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan.
We present a general theory of quantum chemistry-based atomic momentum spectroscopy (QC-AMS) for predicting electron-atom Compton profiles due to the intramolecular motion of each atom in diatomic, triatomic and polyatomic molecules. The atomic motion is assumed to be decomposable into normal-mode molecular vibrations and molecular rotations, and the latter are treated classically. An accuracy assessment of the general theory is performed through comparisons with the AMS Compton profiles of HD and NO, predicted by the full quantum chemistry-based AMS theory that is precise but can work only for diatomic molecules.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, J. D. Block, Sec.III, Salt Lake, Kolkata, West Bengal 700 098, India.
We investigated the temperature dependence of the intermolecular dynamics, including intermolecular vibrations and collective orientational relaxation, of one of the most typical deep eutectic solvents, reline, using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), subpicosecond optical Kerr effect spectroscopy (ps-OKES), and molecular dynamics (MD) simulations. According to fs-RIKES results, the temperature-dependent intermolecular vibrational band peak at ∼90 cm exhibited a redshift with increasing temperature. The density-of-state (DOS) spectrum of reline by MD simulations reproduced this fs-RIKES spectral feature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!