The vibronic level structure of the cyclopentadienyl radical.

J Chem Phys

JILA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA.

Published: August 2008

The 351.1 nm photoelectron spectrum of the cyclopentadienide ion has been measured, which reveals the vibronic structure of the X (2)E(1) (") state of the cyclopentadienyl radical. Equation-of-motion ionization potential coupled-cluster (EOMIP-CCSD) calculations have been performed to construct a diabatic model potential of the X (2)E(1) (") state, which takes into account linear Jahn-Teller effects along the e(2) (') normal coordinates as well as bilinear Jahn-Teller effects along the e(2) (') and ring-breathing a(1) (') coordinates. A simulation based on this ab initio model potential reproduces the spectrum very well, identifying the vibronic levels with linear Jahn-Teller angular momentum quantum numbers of +/-1/2. The angular distributions of the photoelectrons for these vibronic levels are highly anisotropic with the photon energies used in the measurements. A few additional weak photoelectron peaks are observed when photoelectrons ejected parallel to the laser polarization are examined. These peaks correspond to the vibronic levels for out-of-plane modes in the ground X (2)E(1) (") state, which arise due to several pseudo-Jahn-Teller interactions with excited states of the radical and quadratic Jahn-Teller interaction in the X (2)E(1) (") state. A variant of the first derivative of the energy for the EOMIP-CCSD method has been utilized to evaluate the strength of these nonadiabatic couplings, which have subsequently been employed to construct the model potential of the X (2)E(1) (") state with respect to the out-of-plane normal coordinates. Simulations based on the model potential successfully reproduce the weak features that become conspicuous in the 0 degrees spectrum. The present study of the photoelectron spectrum complements a previous dispersed fluorescence spectroscopic study by Miller and co-workers [J. Chem. Phys. 114, 4855 (2001); 114, 4869 (2001)] to provide a detailed account of the vibronic structure of X (2)E(1) (") cyclopentadienyl. The electron affinity of the cyclopentadienyl radical is determined to be 1.808+/-0.006 eV. This electron affinity and the gas-phase acidity of cyclopentadiene have been combined in a negative ion thermochemical cycle to determine the C-H bond dissociation energy of cyclopentadiene; D(0)(C(5)H(6),C-H)=81.5+/-1.3 kcal mol(-1). The standard enthalpy of formation of the cyclopentadienyl radical has been determined to be Delta(f)H(298)(C(5)H(5))=63.2+/-1.4 kcal mol(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2973631DOI Listing

Publication Analysis

Top Keywords

2e1 state
20
cyclopentadienyl radical
16
model potential
16
vibronic levels
12
photoelectron spectrum
8
vibronic structure
8
structure 2e1
8
potential 2e1
8
linear jahn-teller
8
jahn-teller effects
8

Similar Publications

Toward a functional future for the cognitive neuroscience of human aging.

Neuron

January 2025

Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK. Electronic address:

The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities and individual differences in age-related behavioral changes. This goal has been pursued predominantly through structural or "task-free" resting-state functional neuroimaging. The former has elucidated the material foundations of behavioral decline, and the latter has provided key insight into how functional brain networks change with age.

View Article and Find Full Text PDF

The brain selectively allocates energy to functional brain networks under cognitive control.

Sci Rep

December 2024

Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.

Network energy has been conceptualized based on structural balance theory in the physics of complex networks. We utilized this framework to assess the energy of functional brain networks under cognitive control and to understand how energy is allocated across canonical functional networks during various cognitive control tasks. We extracted network energy from functional connectivity patterns of subjects who underwent fMRI scans during cognitive tasks involving working memory, inhibitory control, and cognitive flexibility, in addition to task-free scans.

View Article and Find Full Text PDF

Mathematical and spatial abilities are positively related at both the behavioral and neural levels. Much of the evidence illuminating this relationship comes from classic laboratory-based experimental methods focused on cognitive performance despite most individuals also experiencing math and space in other contexts, such as in conversations or lectures. To broaden our understanding of math-space integration in these more commonplace situations, we used an auditory memory-encoding task with stimuli whose content evoked a range of educational and everyday settings related to math or spatial thinking.

View Article and Find Full Text PDF

Search for an eV-Scale Sterile Neutrino Using Improved High-Energy ν_{μ} Event Reconstruction in IceCube.

Phys Rev Lett

November 2024

Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

Article Synopsis
  • * The study introduces enhanced modeling techniques for neutrino flux and detector response, and it distinguishes between starting (inside) and throughgoing (outside) neutrino interaction events to improve energy resolution.
  • * The findings indicate a best-fit point for the 3+1 model with sin²(2θ_{24})=0.16 and Δm_{41}²=3.5 eV², supporting previous studies while showing consistency with no evidence of sterile neutrinos, as reflected
View Article and Find Full Text PDF

Upregulation of olfactory receptors and neuronal-associated genes highlights complex immune and neuronal dysregulation in Long COVID patients.

Brain Behav Immun

November 2024

Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2E1, AB, Canada; Glycomics Institute of Alberta, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, AB, Canada. Electronic address:

A substantial portion of patients infected with SARS-CoV-2 experience prolonged complications, known as Long COVID (LC). A subset of these patients exhibits the most debilitating symptoms, similar to those defined in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We performed bulk RNA sequencing (RNAseq) on the whole blood of LC with ME/CFS, at least 12 months post-onset of the acute disease, and compared them with controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!