A computational study was carried out for studying the characteristics of the interaction between azulene and water or hydrogen sulfide. In azulene...water complex the water molecule is located with both hydrogen atoms pointing toward the aromatic cloud but displaced to the five-membered ring. Hydrogen sulfide adopts a similar arrangement but located roughly over the central C-C bond of azulene. Calculations show that hydrogen sulfide interacts with azulene more strongly (-4.19 kcal/mol) than water (-3.76 kcal/mol), although this is only revealed at the highest levels of calculation. The nature of the interaction is electrostatic and dispersive in the same percentage for water cluster, whereas for hydrogen sulfide dispersion is the dominant contribution. Clusters containing two water molecules are controlled by the possibility of establishing an O-H...O hydrogen bond. As a consequence, the most stable structure corresponds to the interaction between a water dimer and azulene, with an interaction energy amounting to -11.77 kcal/mol. Hydrogen sulfide interaction is stronger with azulene than with itself, so structures with S-H...S contact and others, where H(2)S only interacts with azulene, present similar interaction energies (-8.02 kcal/mol for the most stable one).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2973632 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!