A photomultiplier (PMT)-based diagnostic system for monitoring spectral lines along multiple viewchords, named the "Filterscope" [R. J. Colchin et al., Rev. Sci. Instrum. 74, 2068 (2003)], is currently in use at the DIII-D, NSTX, and CDX-U fusion plasma devices in the US, and has been installed at the KSTAR device in Korea. This diagnostic has recently been upgraded for application to long-pulse devices, such as KSTAR, EAST in China, and the future ITER in France. A new data acquisition system, employing the PXI instrumentation platform with an embedded Windows microprocessor controller, can simultaneously record up to 72 channels at 100 kHz sampling rates for plasma periods lasting up to 20 min. Based on the average signal level during an adjustable time interval (100 ms in the present DIII-D implementation), the controller digitally adjusts PMT dynode voltage throughout the course of a discharge, thereby maintaining the output signals at a level where they are neither saturated nor dominated by digitizer noise. The new system's ability to accommodate large variations in source strength, discharge to discharge and within a single discharge, has proved particularly valuable during DIII-D operations, since changes between top, bottom, and double-null divertor magnetic configurations lead to large temporal variations in signal brightness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2957777 | DOI Listing |
Viruses
December 2024
Gilead Sciences, Inc., Foster City, CA 94404, USA.
Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain.
: Despite the known impact of propofol and remifentanil on hemodynamics and patient outcomes, there is a lack of comprehensive quantitative analysis, particularly in surgical settings, considering the influence of noxious stimuli. The aim of this study was to develop a quantitative semi-mechanistic population model that characterized the time course changes in mean arterial pressure (MAP) and heart rate (HR) due to the effects of propofol, remifentanil, and different types of noxious stimulation related to the clinical routine. : Data from a prospective study were used; the study analyzed the effects of propofol and remifentanil general anesthesia on female patients in physical status of I-II according to the American Society of Anesthesiologists (ASA I-II) undergoing gynecology surgery.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Additive Technologies Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
Electrospun poly(ε-caprolactone) (PCL)-based scaffolds are widely used in tissue engineering. However, low cell adhesion remains the key drawback of PCL scaffolds. It is well known that nitrogen-doped diamond-like carbon (N-DLC) coatings deposited on the surface of various implants are able to enhance their biocompatibility and functional properties.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
State Key Discipline Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.
In this work, we show a high-performance GaN-on-Si quasi-vertical PiN diode based on the combination of beveled sidewall and fluorine plasma treatment (BSFP) by an inductively coupled plasma (ICP) system. The leakage current and breakdown voltage of the diode are systematically studied. Due to the beveled sidewall treated by the fluorine plasma, the diodes achieve an excellent breakdown voltage (V) of 790 V and a low reverse leakage current.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
We examined how controlling variables in a pre-metallization Ar sputter-etching process for in situ contact-hole cleaning affects the contact-hole profile, etching rate, and substrate damage. By adjusting process parameters, we confirmed that increasing plasma power lowered the DC bias but enhanced the etching rate of SiO, while increasing RF power raised both, with RF power having a more pronounced effect. Higher Ar flow rate reduced etching uniformity and slightly lowered the DC bias.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!