A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements.

Rev Sci Instrum

Plasma Physics Division, Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375, USA.

Published: October 2008

The distribution of argon gas injected by a 12-cm-diameter triple-shell nozzle was characterized using both planar, laser-induced fluorescence (PLIF) and high-sensitivity interferometry. PLIF is used to measure the density distribution at a given time by detecting fluorescence from an acetone tracer added to the gas. Interferometry involves making time-dependent, line-integrated gas density measurements at a series of chordal locations that are then Abel inverted to obtain the gas density distribution. Measurements were made on nominally identical nozzles later used for gas-puff Z-pinch experiments on the Saturn pulsed-power generator. Significant differences in the mass distributions obtained by the two techniques are presented and discussed, along with the strengths and weaknesses of each method.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2979871DOI Listing

Publication Analysis

Top Keywords

planar laser-induced
8
laser-induced fluorescence
8
high-sensitivity interferometry
8
density measurements
8
density distribution
8
gas density
8
comparison planar
4
fluorescence high-sensitivity
4
interferometry techniques
4
techniques gas-puff
4

Similar Publications

Patterning Planar, Flexible Li-S Battery Full Cells on Laser-Induced Graphene Traces.

Nanomaterials (Basel)

December 2024

Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.

View Article and Find Full Text PDF

Femtosecond laser inscription in a ytterbium-doped silver-containing phosphate glass is demonstrated by achieving 3D highly localized laser-induced silver photochemistry. The produced fluorescent silver nanoclusters lead to high optical contrast in the visible range, showing that the coinsertion of Yb ions is not detrimental to the silver-based photochemistry. We demonstrate efficient energy transfer from these silver nanoclusters to the rare-earth Yb ions, leading to near-IR background-free fluorescence emission.

View Article and Find Full Text PDF

Microstructured Liquid Metal-Based Embedded-Type Sensor Array for Curved Pressure Mapping.

Adv Sci (Weinh)

November 2024

State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Human hands can envelop the surface of an object and recognize its shape through touch. However, existing stretchable haptic sensors exhibit limited flexibility and stability to detect pressure during deformation, while also solely achieving recognition of planar objects. Inspired by the structure of skin tissue, an embedded construction-enabled liquid metal-based e-skin composed of a liquid metal microstructured electrode (LM-ME) array is fabricated for curved pressure mapping.

View Article and Find Full Text PDF

Methyl is crucial in plasma-assisted hydrocarbon chemistry, making precise in situ imaging essential for understanding various plasma applications. Its importance in methane chemistry arises from its role as a primary byproduct during the initial phase of methane dehydrogenation. Detecting the CH radical is challenging due to its high reactivity and the prevalence of strongly pre-dissociative electronically excited states.

View Article and Find Full Text PDF

Dual-Mode Stretchable Emitter with Programmable Emissivity and Air Permeability.

ACS Appl Mater Interfaces

November 2024

Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea.

Materials with anisotropic emission characteristics have attracted considerable attention for thermal management. Although many dual-mode emitters have been developed for this purpose in the form of textiles, multilayer films, and photonic structures, multiple functionalities are essential for their versatile applications. Herein, a highly stretchable dual-mode emitter with programmable emissivity and air permeability is presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!