A spatially resolved ion temperature diagnostic for the National Ignition Facility.

Rev Sci Instrum

Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA.

Published: October 2008

The concepts and initial development efforts for a spatially resolved ion temperature diagnostic are described. The diagnostic is intended for Inertial Confinement Fusion experiments at the National Ignition Facility and is an integration of neutron aperture imaging and ion temperature techniques. The neutron imaging technique is extended by recording tomographic projections of the radiation-to-light converter on a streak camera. The streak record is used to calculate images at multiple times during the arrival of the thermally broadened 14.1 MeV neutron flux. The resulting set of images is used to determine the spatially resolved ion temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2973324DOI Listing

Publication Analysis

Top Keywords

ion temperature
16
spatially resolved
12
resolved ion
12
temperature diagnostic
8
national ignition
8
ignition facility
8
ion
4
temperature
4
diagnostic national
4
facility concepts
4

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water.

J Environ Manage

January 2025

Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China. Electronic address:

The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption.

View Article and Find Full Text PDF

Interface Modification by GaO Atomic Layers within Er-Doped GeO Nanofilms for Enhanced Electroluminescence and Operation Stability.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China.

For silicon-based devices using dielectric oxides doped with rare earth ions, their electroluminescence (EL) performance relies on the sufficient carrier injection. In this work, the atomic GaO layers are inserted within the Er-doped GeO nanofilms fabricated by atomic layer deposition (ALD). Both Ga(CH) and Ga(CH) could realize the ALD growth of GaO onto the as-deposited GeO nanofilm with unaffected deposition rates.

View Article and Find Full Text PDF

In the current study, calcium alginate was used as a carrier for Agaricus bisporus CU13 laccase immobilization, with an immobilization yield of the entrapped laccase of 91.95%. Free and immobilized enzymes showed their best enzyme activity at 60 °C as an optimum temperature.

View Article and Find Full Text PDF

Novel smart materials with high curie temperatures: EuDyGeO, EuLaGeO and EuHoGeO.

Appl Radiat Isot

December 2024

Department of Metallurgy and Materials Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey.

The EuDyGeO, EuLaGeO and EuHoGeO powder were obtained through a solid-state reaction method via multistep firing of stoichiometric ratios of EuO, GeO, DyO, LaO and HoO in open atmosphere at temperatures from 800 to 1150 °C. The thermal behaviour, phase formation, SEM/EDX analysis, photoluminescence properties, Curie tempereture, dielectric and piezoelectric properties of the samples were investigated by TG/DTA, XRD, SEM, PL, TG/DTA, LCR-meter and d-meter, respectively. The germenates having triclinic crystal system have D→F, D→F, D→F, D→F transitions of Eu ions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!