Tracer aluminum alloyed wires (Al5056) are used to provide additional information for x-ray diagnostics of implosions of Cu planar wire arrays (PWAs). Specifically, the analysis of combined PWA experiments using the extensive set of x-ray diagnostics is presented. In these experiments, which were conducted at the 1MA pulsed power generator at University of Nevada, Reno, the Z-pinch load consisted of several (eight) Cu alloyed (main material) and one to two Al alloyed (tracer) wires mounted in a single plane row or double parallel plane rows, single planar wire array (SPWA) or double planar wire array (DPWA), respectively. The analysis of x-ray spatially resolved spectra from the main material indicates the increase in the electron temperature T(e) near the cathode. In general, the axial gradients in T(e) are more pronounced for SPWA than for DPWA due to the more "columnlike" plasma formation for SPWA compared to "hot-spot-like" plasma formation for DPWA. In addition, x-ray spectra from tracer wires are studied, and estimated plasma parameters are compared with those from the main material. It is observed that the x-ray K-shell Al spectra manifest more opacity features for the case of SPWA with about 18% of Al mass (to the total load mass) compared to the case of DPWA with about 11% of Al mass. The analysis of time-gated spectra shows that the relative intensity of the most intense K-shell Al line, small before the x-ray burst, increases with time and peaks close to the maximum of the sub-keV signal.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2965785DOI Listing

Publication Analysis

Top Keywords

planar wire
16
x-ray diagnostics
12
tracer wires
12
main material
12
wire arrays
8
1ma pulsed
8
pulsed power
8
power generator
8
wire array
8
plasma formation
8

Similar Publications

Article Synopsis
  • A fiber Bragg grating (FBG) demodulation system using arrayed waveguide gratings (AWGs) has been developed, integrating key components like photodiode arrays and transimpedance amplifiers.
  • The system features eight output channels, with signals processed for high-speed transmission via Ethernet, resulting in a compact design measuring 200 × 100 × 60 mm.
  • Experimental results indicate the system achieves a wavelength demodulation accuracy of 4.24 pm and can handle demodulation rates exceeding 200 kHz, making it suitable for high-frequency vibration sensing applications.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers are leveraging Fano resonance, which involves the interaction of molecular and metamaterial absorption bands, to enhance the detection capabilities of SEIRA, although current designs are limited to specific chemicals.
  • * The proposed broadband oblique-wire-bundle (OWB) metamaterial absorber aims to interact with multiple functional groups in samples, demonstrating successful Fano resonance responses in experiments, thereby improving rapid detection applications in food safety and chemical analysis.
View Article and Find Full Text PDF

In this paper, an experimental investigation has been performed for the three different micro-fabrication techniques for optimization in the development process of the W-band planar beam-wave interaction structure. The W-band planar beam-wave interaction structure has been developed using three different micro-fabrication methods, namely micro-EDM (electric discharge milling), wire-EDM, and micro-milling. The effect of each fabrication method on the developed structure is analyzed using scanning electron microscopy and ZETA 3D optical microscopy for their optimization.

View Article and Find Full Text PDF

This paper presents an adaptive line-of-sight (LOS) guidance method, incorporating a finite-time sideslip angle observer to achieve precise planar path tracking of a bionic robotic fish driven by LOS. First, an adaptive LOS guidance method based on real-time cross-track error is presented. To mitigate the adverse effects of the sideslip angle on tracking performance, a finite-time observer (FTO) based on finite-time convergence theory is employed to observe the time-varying sideslip angle and correct the target yaw.

View Article and Find Full Text PDF

We describe a conductometric assay of the enzymatic conversion of glucose to gluconic acid by dissolved glucose oxidase (GOx), using the generation of proton and gluconate from the reaction product dissociation for glucose detection. Simple basics of ionic conductivity, a silver/silver chloride wire pair, and a small applied potential translate glucose-dependent GOx activity into a scalable cell current. Enzyme immobilization and complex sensor design, involving extra nanomaterials or microfabrication of electrode structures, are entirely avoided, in contrast to all modern electrochemical glucose biosensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!