Vitrification successfully preserves hepatocyte spheroids.

Cell Transplant

Low Temperature Preservation Unit, National University Medical Institutes Yong Loo Lin School of Medicine, National University of Singapore, Singapore.

Published: December 2008

This is the first report on low-temperature preservation of self-assembled cell aggregates by vitrification, which is both a time- and cost-effective technology. We developed an effective protocol for vitrification (ice-free cryopreservation) of hepatocyte spheroids that employs rapid stepwise exposure to cryoprotectants (10.5 min) at room temperature and direct immersion into liquid nitrogen (-196 degrees C). For this, three vitrification solutions (VS) were formulated and their effects on vitrified-warmed spheroids were examined. Cryopreservation using ethylene glycol (EG)-sucrose VS showed excellent preservation capability whereby highly preserved cell viability and integrity of vitrified spheroids were observed, through confocal and scanning electron microscopy imaging, when compared to untreated control. The metabolic functions of EG-sucrose VS-cryopreserved spheroids, as assessed by urea production and albumin secretion, were not significantly different from those of control within the same day of observation. In both the vitrification and control groups, albumin secretion was consistently high, ranging from 47.57 +/- 14.39 to 70.38 +/- 11.29 microg/10(6) cells and from 56.84 +/- 14.48 to 71.79 +/- 16.65 microg/10(6) cells, respectively, and urea production gradually increased through the culture period. The efficacy of vitrification procedure in preserving the functional ability of hepatocyte spheroids was not improved by introduction of a second penetrating cryoprotectant, 1,2-propanediol (PD). Spheroids cryopreserved with EG-PD-sucrose VS showed maintained cell viability; however, in continuous culture, levels of both metabolic functions were lower than those cryopreserved with EG-sucrose VS. EG-PD VS, in which nonpenetrating cryoprotectant (sucrose) was excluded, provided poor protection to spheroids during cryopreservation. This study demonstrated that sucrose plays an important role in the effective vitrification of self-assembled cell aggregates. In a broad view, the excellent results obtained suggest that the developed vitrification strategy, which is an alternative to freezing, may be effectively used as a platform technology in the field of cell transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.3727/096368908786516765DOI Listing

Publication Analysis

Top Keywords

hepatocyte spheroids
12
vitrification
8
spheroids
8
self-assembled cell
8
cell aggregates
8
cell viability
8
metabolic functions
8
urea production
8
albumin secretion
8
microg/106 cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!