An electromagnetic-based tracking and navigation system was evaluated for interventional radiology. The electromagnetic tracking system (CAPPA IRAD EMT, CASinnovations, Erlangen, Germany) was used for real-time monitoring of punctures of the lumbar facet joints and intervertebral disks in a spine phantom, three pig cadavers and three anaesthesized pigs. Therefore, pre-interventional computed tomography (CT) datasets were transferred to the navigation system and puncture trajectories were planned. A coaxial needle was advanced along the trajectories while the position of the needle tip was monitored in real time. After puncture tracts were marked with pieces of wire another CT examination was performed and distances between wires and anatomical targets were measured. Performing punctures of the facet joints mean needle positioning errors were 0.4 +/- 0.8 mm in the spine phantom, 2.8 +/- 2.1 mm ex vivo and 3.0 +/- 2.0 mm in vivo with mean length of the puncture tract of 54.0 +/- 10.4 mm (phantom), 51.6 +/- 12.6 mm (ex vivo) and 50.9 +/- 17.6 mm (in vivo). At first attempt, intervertebral discs were successfully punctured in 15/15 in the phantom study, in 12/15 in the ex-vivo study and 14/15 in the in-vivo study, respectively. Immobilization of the patient and optimal positioning of the field generator are essential to achieve a high accuracy of needle placement in a clinical CT setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-008-1227-z | DOI Listing |
Sensors (Basel)
January 2025
The Blavatnik School of Computer Science and AI, Tel Aviv University, Tel Aviv 69978, Israel.
This article surveys the literature on miniature radio transmitters designed to track free-ranging wild animals using emitter-localization techniques. The articles covers the topics of power sources used in such transmitters, including miniature batteries and energy harvesting, techniques for generating the transmitted radio-frequency carrier, techniques for creating short radio pulses and more general on-off schedules, modulation in modern wildlife-tracking transmitters, construction, manufacturing, and tuning techniques, and recent trends in this area. The article also describes the recreation of the first successful wildlife-tracking transmitter, a nontrivial invention that had a profound impact on wildlife ecology, and explores its behavior.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Mechatronics Engineering Department, Istanbul Ticaret University, 34854 Maltepe, Turkey.
An automated micro-tweezers system with a flexible workspace would benefit the intelligent sorting of live cells. Such micro-tweezers could employ a forced vortex strong enough to capture a single cell. Furthermore, addressable control of the position to the vortex would constitute a robotic system.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.
View Article and Find Full Text PDFBMC Pregnancy Childbirth
January 2025
MyMilk Laboratories Ltd. Herzliya, Herzliya, Israel.
Background: Human milk electrolytes are known biomarkers of stages of lactation in the first weeks after birth. However, methods for measuring milk electrolytes are available only in laboratory or expert settings. A small handheld milk sensing device (Mylee) capable of determining on-site individual secretory activation progress from sensing the conductivity of a tiny milk specimen was developed.
View Article and Find Full Text PDFTech Vasc Interv Radiol
December 2024
Department of Radiology, Mayo Clinic, Phoenix, AZ. Electronic address:
Trans-arterial interventions are an increasingly utilized approach for diagnosing and treating a wide range of pathologies, providing superior patient outcomes compared to traditional open surgical methods. Recent advancements in tracking and navigation technologies have significantly refined these interventions, enhancing procedural precision and success. Advanced imaging modalities, such as fluoroscopy, cone beam computed tomography (CBCT), and intravascular ultrasound (IVUS), are frequently used strategies offering critical real-time guidance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!