In teleosts, proper balance and hearing depend on mechanical sensors in the inner ear. These sensors include actin-based microvilli and microtubule-based cilia that extend from the surface of sensory hair cells and attach to biomineralized 'ear stones' (or otoliths). Otolith number, size and placement are under strict developmental control, but the mechanisms that ensure otolith assembly atop specific cells of the sensory epithelium are unclear. Here we demonstrate that cilia motility is required for normal otolith assembly and localization. Using in vivo video microscopy, we show that motile tether cilia at opposite poles of the otic vesicle create fluid vortices that attract otolith precursor particles, thereby biasing an otherwise random distribution to direct localized otolith seeding on tether cilia. Independent knockdown of subunits for the dynein regulatory complex and outer-arm dynein disrupt cilia motility, leading to defective otolith biogenesis. These results demonstrate a requirement for the dynein regulatory complex in vertebrates and show that cilia-driven flow is a key epigenetic factor in controlling otolith biomineralization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821763PMC
http://dx.doi.org/10.1038/nature07520DOI Listing

Publication Analysis

Top Keywords

dynein regulatory
12
regulatory complex
12
otolith
8
otolith biogenesis
8
inner ear
8
otolith assembly
8
cilia motility
8
tether cilia
8
cilia
5
dynein
4

Similar Publications

encodes the heavy chain of dynein 1, a protein that plays a critical role in intracellular transport and is also involved in neurogenesis, bipolar spindle apparatus formation, and interaction with certain regulatory proteins. Many variants of the gene are described in various neuromuscular, psychoneurological, congenital abnormalities, and malignancies. In this clinical case, the correlation of clinical manifestations with molecular genetic changes of the gene was evaluated.

View Article and Find Full Text PDF

Pt-LIS1 participates nuclear deformation and acrosome formation via regulating Dynein-1 during spermatogenesis in Portunus trituberculatus.

Sci Rep

February 2025

Key Laboratory of Applied Marine Biotechnology By the Ministry of Education and Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China.

Spermatogenesis involves complex dynamic mechanisms. Dynein-1 is a key carrier in cellular cargo transport, participating in nuclear deformation and acrosome formation during spermatogenesis. However, the regulatory mechanisms of Dynein-1 during cargo transport remain unknown.

View Article and Find Full Text PDF

Outer dynein arms (ODAs) are essential for ciliary motility and are preassembled in the cytoplasm before trafficking into cilia by intraflagellar transport (IFT). ODA16 is a key adaptor protein that links ODAs to the IFT machinery via direct interaction with the IFT46 protein. However, the molecular mechanisms regulating the assembly, transport, and release of ODAs remain poorly understood.

View Article and Find Full Text PDF

CFAP65 is essential for C2a projection integrity in axonemes: implications for organ-specific ciliary dysfunction and infertility.

Cell Mol Life Sci

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.

Defects in motile cilia and flagella lead to motile ciliopathies, including primary ciliary dyskinesia (PCD), which manifests as multi-organ dysfunction such as hydrocephalus, infertility, and respiratory issues. CFAP65 variants are a common cause of male infertility, but its localization and function have remained unclear. In this study, we systematically evaluated CFAP65's role using Cfap65 knockout mice and human patients with CFAP65 variants.

View Article and Find Full Text PDF

The Balbiani body is formed by microtubule-controlled molecular condensation of Buc in early oogenesis.

Curr Biol

January 2025

Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel. Electronic address:

Vertebrate oocyte polarity has been observed for two centuries and is essential for embryonic axis formation and germline specification, yet its underlying mechanisms remain unknown. In oocyte polarization, critical RNA-protein (RNP) granules delivered to the oocyte's vegetal pole are stored by the Balbiani body (Bb), a membraneless organelle conserved across species from insects to humans. However, the mechanisms of Bb formation are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!