Unfavourable environmental conditions such as cold induce the transcription of a range of genes in plants in order to acclimate to these growth conditions. To better understand the cold acclimation of maize (Zea mays L.) it is important to identify components of the cold stress response. For this purpose, cold-induced genes were analysed using the PCR-select cDNA subtraction method. We identified several novel genes isolated from maize seedling exposed for 48h to 6 degrees C. Of 18 Zea mays cold-induced genes (ZmCOI genes) characterized, the majority share similarities with proteins with known function in signal transduction and photosynthesis regulation. RT-PCR was conducted for a selected group of genes, namely ZmCOI6.1, ZmACA1, ZmDREB2A and ZmERF3, confirming the induction by low temperature. In addition, it was found that their expression was strongly induced by other abiotic stresses such as drought and high salt concentration, by stress signalling molecules such as jasmonic acid, salicylic acid and abscisic acid, and by membrane rigidification. These results suggest that this group of genes is involved in a general response to abiotic stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2008.10.010DOI Listing

Publication Analysis

Top Keywords

zea mays
12
low temperature
8
maize zea
8
genes
8
genes involved
8
signal transduction
8
cold-induced genes
8
group genes
8
abiotic stresses
8
temperature stress
4

Similar Publications

Sweet corn ( L. ) is gaining global popularity as a staple crop and a vegetable due to its high nutritional value. However, information on grain magnesium (Mg) and calcium (Ca) status and their response to phosphorus (P) fertilization in sweet corn is still insufficient.

View Article and Find Full Text PDF

Coronaviruses continue to disrupt health and economic productivity worldwide. Porcine epidemic diarrhea virus (PEDV) is a devastating swine disease and SARS-CoV-2 is the latest coronavirus to infect the human population. Both viruses display a similar spike protein on the surface that is a target of vaccine development.

View Article and Find Full Text PDF

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

Anti-Fatigue Activity of Corn Protein Hydrolysate Fermented by Lactic Acid Bacteria.

Nutrients

January 2025

Heilongjiang Provincial Key Laboratory of Corn Deep Processing Theory and Technology, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China.

Objectives: This study aimed to clarify the effect of lactic acid bacteria-fermented corn protein hydrolysate (FCH) on fatigue in mice and explore the connection between fatigue-related indicators and intestinal microbial flora.

Methods: The fatigue model of mice was constructed by exercise endurance experiment. The anti-fatigue level of FCH was evaluated by measuring physiological and biochemical indexes in mouse serum, liver and skeletal muscle.

View Article and Find Full Text PDF

Integrating Remote Sensing and Soil Features for Enhanced Machine Learning-Based Corn Yield Prediction in the Southern US.

Sensors (Basel)

January 2025

United States Department of Agriculture-Agriculture Research Service, Grassland Soil and Water Research Laboratory, Temple, TX 76502, USA.

Efficient and reliable corn ( L.) yield prediction is important for varietal selection by plant breeders and management decision-making by growers. Unlike prior studies that focus mainly on county-level or controlled laboratory-scale areas, this study targets a production-scale area, better representing real-world agricultural conditions and offering more practical relevance for farmers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!