Regulation of the eicosanoid pathway by tumour necrosis factor alpha and leukotriene D4 in intestinal epithelial cells.

Prostaglandins Leukot Essent Fatty Acids

Cell and Experimental Pathology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, CRC, Entrance 72, Building 91, Floor 11, SE-205 02 Malmö, Sweden.

Published: December 2008

In this study the mRNA and protein levels of the key enzymes involved in eicosanoid biosynthesis and the cysteinyl leukotriene receptors (CysLT1R and CysLT2R) have been analysed in non-transformed intestinal epithelial and colon cancer cell lines. Our results revealed that tumour necrosis factor alpha (TNF-alpha), and leukotriene D4 (LTD4), which are inflammatory mediators implicated in carcinogenesis, stimulated an increase of cyclooxygenase-2 (COX-2), in non-transformed epithelial cells, and 5-lipoxygenase (5-LO) in both non-transformed and cancer cell lines. Furthermore, these mediators also stimulated an up-regulation of LTC4 synthase in cancer cells as well as non-transformed cells. We also observed an endogenous production of CysLTs in these cells. TNF-alpha and LTD4, to a lesser extent, up-regulate the CysLT1R levels. Interestingly, TNF-alpha also reduced CysLT2R expression in cancer cells. Our results demonstrate that inflammatory mediators can cause intestinal epithelial cells to up-regulate the expression of enzymes needed for the biosynthesis of eicosanoids, including the cysteinyl leukotrienes, as well as the signal transducing proteins, the CysLT receptors, thus providing important mechanisms for both maintaining inflammation and for tumour progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plefa.2008.09.024DOI Listing

Publication Analysis

Top Keywords

intestinal epithelial
12
epithelial cells
12
tumour necrosis
8
necrosis factor
8
factor alpha
8
cancer cell
8
cell lines
8
inflammatory mediators
8
cancer cells
8
cells
7

Similar Publications

Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).

View Article and Find Full Text PDF

Background/objectives: Ulcerative colitis (UC) is a chronic and easily recurrent inflammatory bowel disease. The gut microbiota and plasma metabolites play pivotal roles in the development and progression of UC. Therefore, therapeutic strategies targeting the intestinal flora or plasma metabolites offer promising avenues for the treatment of UC.

View Article and Find Full Text PDF

Therapeutic Potential of (L.) . Leaf Extract in Modulating Gut Microbiota and Immune Response for the Treatment of Inflammatory Bowel Disease.

Pharmaceuticals (Basel)

January 2025

School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, No. 58 Renmin Avenue, Haikou 570228, China.

Inflammatory bowel disease (IBD) is a persistent inflammatory condition affecting the gastrointestinal tract, distinguished by the impairment of the intestinal epithelial barrier, dysregulation of the gut microbiota, and abnormal immune responses. (L.) , traditionally used in Chinese herbal medicine for gastrointestinal issues such as bleeding and dysentery, has garnered attention for its potential therapeutic benefits.

View Article and Find Full Text PDF

The intratumoral microbiome plays a significant role in many cancers, such as lung, pancreatic, and colorectal cancer. Pancreatic cancer (PC) is one of the most lethal malignancies and is often diagnosed at advanced stages. , an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in several extra-oral human diseases and, lately, in pancreatic cancer progression and prognosis.

View Article and Find Full Text PDF

Microorganisms synthesize diverse types of exopolysaccharides (EPSs). EPSs with varying structural and physical properties can demonstrate unique health benefits, which allow for their tailored applications as functional foods such as prebiotics. Levan, a fructose-based EPS, is gaining considerable attention as an effective prebiotic to support the growth of beneficial gut bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!