The adzuki bean borer moth, Ostrinia scapulalis, uses a mixture of (E)-11- and (Z)-11-tetradecenyl acetates as a sex pheromone. At a step in the pheromone biosynthetic pathway, fatty-acyl precursors are converted to corresponding alcohols by an enzyme, fatty-acyl reductase (FAR). Here we report the cloning of FAR-like genes expressed in the pheromone gland of female O. scapulalis, and the characterization of a single pheromone-gland-specific FAR (pgFAR) and its functional assay using an insect cell expression system. As many as thirteen FAR-like genes (FAR-I-FAR-XIII) were expressed in the pheromone gland of O. scapulalis; however, only one (FAR-XIII) was pheromone-gland-specific. The deduced amino acid sequence of FAR-XIII predicted a 462-aa protein with a conserved NAD(P)H-binding motif in the N-terminal region, showing overall identity of 34% with the pgFAR of Bombyx mori. A functional assay using Sf9 cells transfected with an expression vector containing the open reading frame of the FAR-XIII gene has proven that FAR-XIII protein has the ability to convert a natural substrate, (Z)-11-tetradecenoic acid, to a corresponding alcohol, (Z)-11-tetradecenol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ibmb.2008.10.008 | DOI Listing |
ACS Nano
January 2025
Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
Bacterial membrane vesicles (BMVs) are emerging as powerful natural nanoparticles with transformative potential in medicine and industry. Despite their promise, scaling up BMV production and ensuring stable isolation and storage remain formidable challenges that limit their broader application. Inspired by eukaryotic mechanisms of membrane curvature, we engineered DH5α to serve as a high-efficiency BMV factory.
View Article and Find Full Text PDFMol Cancer
December 2024
Center for Intelligent Oncology, Chongqing University Cancer Hospital and Chongqing University School of Medicine, and Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing, 400030, China.
Background: Protein palmitoylation is a reversible fatty acyl modification that undertakes important functions in multiple physiological processes. Dysregulated palmitoylations are frequently associated with the formation of cancer. How palmitoyltransferases for S-palmitoylation are involved in the occurrence and development of hepatocellular carcinoma (HCC) is largely unknown.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:
Photo-thermo-sensitive genic male sterility (PTGMS), which exhibits varying fertility levels under different environmental conditions, is a crucial method for heterosis utilization in wheat. However, the mechanisms underlying fertility conversion remain unclear. In the study, three BS type PTGMS lines were analyzed to study fertility conversion characteristics.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Institute of Organic Chemistry and Chemical Biology, Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
Fatty acid synthase (FAS) multienzymes are responsible for de novo fatty acid biosynthesis and crucial in primary metabolism. Despite extensive research, the molecular details of the FAS catalytic mechanisms are still poorly understood. For example, the β-ketoacyl synthase (KS) catalyzes the fatty acid elongating carbon-carbon-bond formation, which is the key catalytic step in biosynthesis, but factors that determine the speed and accuracy of his reaction are still unclear.
View Article and Find Full Text PDFChem Phys Lipids
January 2025
Institut Agro, INSERM, INRAE, Univ Rennes, NuMeCan, Rennes 35000, France; INSERM, INRAE, Univ Rennes, NuMeCan, Rennes 35000, France. Electronic address:
Fatty acid desaturases are key enzymes in lipid metabolism. They introduce double bonds between defined carbons of the fatty acyl chain and catalyze rate-limiting steps in the biosynthesis of polyunsaturated fatty acids. For decades, in vitro desaturase activities have been determined by using radiolabeled fatty acids as substrates, incubated with tissue or cell fractions containing membrane-bound desaturases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!