Hemispheric specialization or asymmetry in higher brain functions such as language is well accepted. This study was designed to quantitatively determine if the hemispheric asymmetry is measurable in the somatosensory system. Twenty-two participants were studied with magnetoencephalography (MEG) while their left and right index fingers were stimulated in randomized order. The finger representation in the cortex was volumetrically localized using a wavelet based beamformer. The strength of functional activity was estimated with an intensity volume while the waveforms of the virtual sensors were computed with a virtual sensor placed in the center of localized finger area. The results showed that the latency of the first identifiable response evoked by left finger stimulation was significantly shorter than that evoked by right finger stimulation (p<0.05). The left somatosensory cortex generated higher frequency neuromagnetic signals than did the right somatosensory cortex (p<0.05). Moreover, the volume of neuromagnetic activation elicited by right finger stimulation was significantly larger than that elicited by left finger stimulation in males (p<0.001). The neuromagnetic activation revealed by virtual sensors was more consistent than that revealed by physical sensors across participants. We conclude that neuromagnetic activities in the left and right somatosensory cortices have significant differences in terms of response latency, oscillation frequency and activation volume in high-frequency neuromagnetic signals. An investigation of the hemispheric specific features of neuromagnetic activation in the somatosensory cortex lays a foundation for the study of psychophysiologic asymmetries in the brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpsycho.2008.10.009DOI Listing

Publication Analysis

Top Keywords

finger stimulation
8
time frequency
4
frequency volumetric
4
volumetric differences
4
differences high-frequency
4
high-frequency neuromagnetic
4
neuromagnetic oscillation
4
oscillation left
4
left somatosensory
4
somatosensory cortices
4

Similar Publications

Preeclampsia (PE) is a multifactorial disorder of pregnancy, characterized by new-onset gestational hypertension. High-throughput mRNA sequencing (RNA-seq) was performed to analyze the gene expression patterns in placentas from patients with early-onset PE (EOPE). PR domain zinc-finger protein 1 (PRDM1) expression increased in the chorionic villi and placental basal plate from patients with PE and nitro--arginine methyl ester (L-NAME)-treated rats.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of TGFBI as a key gene in the development of intervertebral disc degeneration (IDD) and how it is regulated by MARCHF8.
  • The researchers used advanced gene analysis techniques to identify significant gene modules related to IDD and found that changes in TGFBI levels affect cell behavior, inflammation, and extracellular matrix breakdown.
  • Results indicated that MARCHF8 plays a crucial role in regulating TGFBI expression, which impacts NP cell apoptosis and inflammatory responses through the NF-κB signaling pathway.
View Article and Find Full Text PDF

A and Extract Blend Attenuates Muscle Atrophy by Regulating Protein Metabolism and Antioxidant Activity.

J Med Food

December 2024

Division of Food and Nutrition and Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea.

Here, we investigated whether a mixture of and (1:3, KGC01CE) could suppress muscle atrophy in HO-induced C2C12 cells and dexamethasone-injected mice. Our results revealed that KGC01CE effectively safeguarded against HO-induced muscle atrophy in C2C12 cells compared with the same mixture at other ratios. We demonstrated that dexamethasone elicited oxidative stress in muscle tissue and decreased the grip strength and cross-sectional areas of muscle fibers; however, oral administration of KGC01CE (1:3) suppressed these dexamethasone-induced changes.

View Article and Find Full Text PDF

Fucosterol, a Phytosterol of Marine Algae, Attenuates Immobilization-Induced Skeletal Muscle Atrophy in C57BL/6J Mice.

Mar Drugs

December 2024

Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.

The objective of this study was to examine whether fucosterol, a phytosterol of marine algae, could ameliorate skeletal muscle atrophy in tumor necrosis factor-alpha (TNF-α)-treated C2C12 myotubes and in immobilization-induced C57BL/6J mice. Male C57BL6J mice were immobilized for 1 week to induce skeletal muscle atrophy. Following immobilization, the mice were administrated orally with saline or fucosterol (10 or 30 mg/kg/day) for 1 week.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH) is the most common cause of chronic liver diseases with its pathophysiological mechanism poorly understood. In this work, serological, histological, molecular biological, biochemical, and immunological methods were applied to explore the pathological significance and action of zinc finger protein 281 (ZFP281 in mouse, ZNF281 in human) and targeted strategies. We reported that ZFP281/ZNF281 abundance in hepatocytes was positively correlated with the progression of NASH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!