Purpose: Arterial spin labeling (ASL) is a developing magnetic resonance imaging (MRI) method for noninvasive measurement of cerebral blood flow (CBF). The purpose of this study was to evaluate the usefulness of ASL for detecting interictal temporal hypoperfusion in temporal lobe epilepsy (TLE). ASL-derived CBF measurements were compared with those derived from H(2)(15)O positron emission tomography (PET).

Methods: 11 normal controls and 10 patients with medically intractable TLE were studied. Pulsed ASL (PASL) with quantitative imaging of perfusion using a single subtraction, second version (QUIPSS II) was performed in all subjects and H(2)(15)O PET was performed in patients. Regional CBF values in the mesial and lateral temporal lobes were measured utilizing quantitative analysis of perfusion images. A perfusion asymmetry index (AI) was calculated for each region.

Results: In patients, mean CBF in the mesial temporal lobe was not significantly different between PASL and H(2)(15)O PET, and ipsilateral mesial temporal CBF was lower than contralateral CBF with both techniques. PASL detected significant mesial temporal perfusion asymmetry agreeing with EEG laterality in four patients. H(2)(15)O PET found ipsilateral interictal hypoperfusion in three. Both scans found unilateral hypoperfusion in one patient with bilateral EEG discharges.

Conclusions: Pulsed ASL may be a promising approach to detecting interictal hypoperfusion in TLE. This method has potential as a clinical alternative to H(2)(15)O PET due to noninvasiveness and easy accessibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597620PMC
http://dx.doi.org/10.1016/j.eplepsyres.2008.08.001DOI Listing

Publication Analysis

Top Keywords

mesial temporal
16
h215o pet
16
temporal lobe
12
arterial spin
8
spin labeling
8
lobe epilepsy
8
detecting interictal
8
pulsed asl
8
perfusion asymmetry
8
pet ipsilateral
8

Similar Publications

Objective: Progressive Supranuclear Palsy (PSP) is a severe neurodegenerative disease characterized by tangles of hyperphosphorylated tau protein and tufted astrocytes. Developing treatments for PSP is challenging due to the lack of disease models reproducing its key pathological features. This study aimed to model sporadic PSP-Richardson's syndrome (PSP-RS) using multi-donor midbrain organoids (MOs).

View Article and Find Full Text PDF

Highly specific amyloid and tau PET ligands for ATN classification in suspected Alzheimer's disease patients.

Ann Nucl Med

January 2025

Department of Radiological Sciences, School of Health Science, Fukushima Medical University, 10-6 Sakae, Fukushima City, Fukushima, 960-8516, Japan.

Objective: This study aims to accurately classify ATN profiles using highly specific amyloid and tau PET ligands and MRI in patients with cognitive impairment and suspected Alzheimer's disease (AD). It also aims to explore the relationship between quantified amyloid and tau deposition and cognitive function.

Methods: Twenty-seven patients (15 women and 12 men; age range: 64-81 years) were included in this study.

View Article and Find Full Text PDF

Objective: To observe and measure the morphological and temporal evolutionary features of the hypersynchronous (HYP) pattern in the mesial temporal seizure.

Methods: The HYP patterns during preictal and interictal states of 16 mesial temporal epileptic patients were analyzed. The wave components of the HYP transients were firstly observed and measured.

View Article and Find Full Text PDF

Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures.

View Article and Find Full Text PDF

Epilepsy is a common neurological disease that is treated with medications; however, patients with drug-resistant epilepsy, commonly intractable temporal lobe epilepsy, tend to have better control with surgical treatment. While the mainstay of surgical treatment is anterior temporal lobectomy, it carries risk of potential adverse effects hence minimally invasive techniques are now being used as an alternative to open surgery. This systematic review and meta-analysis compare the efficacy and safety of three of the most used techniques: laser interstitial thermal therapy (LITT), radiofrequency ablation (RFA) and stereotactic radiosurgery (SRS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!