In this study, we analyzed the influence of proteoglycans on the interaction between human high molecular weight kininogen (HK) and the cell surface. We found that D5- related peptide inhibits HK-biotin cellular uptake. Confocal microscopy showed that HK colocalizes with heparan sulfate proteoglycan (HSPG) at the cell surface. When biotin-HK is incubated with rabbit aorta endothelial cells (RAECs) and CHO-K1 cells, it is internalized into acidic intracellular vesicles, whereas when incubated with CHO-745 cells, which express reduced levels of glycosaminoglycans, HK is not internalized. To further verify the hypothesis that HSPG-dependent mechanisms are involved in HK uptake and proteolytic processing in lysosomes, we tested chloroquine, which blocks Alexa 488- HK colocalization with Lyso Tracker in acidic endosomal vesicles. The process of HK internalization was blocked by low temperatures, methyl-beta-cyclodextrin, FCCP and 2-deoxy-D-glucose, implying that HK uptake into acidic vesicles is energy-dependent and most likely involves binding to HSPG structures localized in cholesterol-rich domains present in the plasma membrane. Kinin generation at the cell surface was much higher in tumorigenic cells (CHO-K1) when compared to endothelial cells (RAECs). The present data indicate that the process of HK endocytosis involving HSPG is a novel additional mechanism which may control kinin generation at the cell surface.

Download full-text PDF

Source
http://dx.doi.org/10.1515/BC.2009.016DOI Listing

Publication Analysis

Top Keywords

cell surface
16
heparan sulfate
8
cellular uptake
8
high molecular
8
molecular weight
8
weight kininogen
8
endothelial cells
8
cells raecs
8
kinin generation
8
generation cell
8

Similar Publications

Photodynamic therapy (PDT), utilizing a photosensitizer (PS) to induce tumor cell death, is an effective modality for cancer treatment. PS-peptide conjugates have recently demonstrated remarkable antitumor potential in preclinical trials. However, the limited cell membrane binding affinity and rapid systemic clearance have hindered their transition to clinical applications.

View Article and Find Full Text PDF

Golgi protein 73: the driver of inflammation in the immune and tumor microenvironment.

Front Immunol

January 2025

Hangzhou Lin'an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China.

Golgi Protein 73 (GP73) is a Golgi-resident protein that is highly expressed in primary tumor tissues. Initially identified as an oncoprotein, GP73 has been shown to promote tumor development, particularly by mediating the transport of proteins related to epithelial-mesenchymal transition (EMT), thus facilitating tumor cell EMT. Though our previous review has summarized the functional roles of GP73 in intracellular signal transduction and its various mechanisms in promoting EMT, recent studies have revealed that GP73 plays a crucial role in regulating the tumor and immune microenvironment.

View Article and Find Full Text PDF

Introduction: T regulatory cells (Tregs) inversely correlate with disease progression in Amyotrophic Lateral Sclerosis (ALS) and fast-progressing ALS patients have been reported to exhibit dysfunctional, as well as reduced, levels of Tregs. This study aimed to evaluate the longitudinal changes in Tregs among ALS patients, considering potential clinical and biological modifiers of their percentages and concentrations. Additionally, we explored whether measures of ALS progression, such as the decline over time in the revised ALS Functional Rating Scale (ALSFRS-r) or forced vital capacity (FVC) correlated Treg levels and whether Treg phenotype varied during the course of ALS.

View Article and Find Full Text PDF

Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues.

View Article and Find Full Text PDF

Many cellular functions depend on the physical properties of the cell's environment. Many bacteria have different types of surface appendages to enable adhesion and motion on various surfaces. is a social soil bacterium with two distinctly regulated modes of surface motility, termed the social motility mode, driven by type IV pili, and the adventurous motility mode, based on focal adhesion complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!