Background: Eritoran tetrasodium (E5564), a structural analogue of the lipid A portion of endotoxin (lipopolysaccharide or LPS), is an antagonist of LPS and other Toll-like receptor 4 (TLR4) ligands. Eritoran tetrasodium quantitatively blocks LPS response in vivo in animal and human endotoxemia models and demonstrates a long pharmacokinetic half-life, but a short pharmacodynamic half-life. The objective of this study was to assess the safety, and pharmacokinetic and pharmacodynamic profile of E5564 infused twice-daily at three target steady-state plasma levels of approximately 1, 3 and 10 microg/ml in healthy volunteers.

Results: Loading and maintenance doses of up to 77 mg over 3 days in females and 105 mg over 6 days in males were safe and well-tolerated except for self-limiting phlebitis at the drug infusion site. Plasma levels reached steady state by 24 h. The C(max), C(min), and C(88), AUC(0 -infinity) were dose proportional and gender independent. Pharmacodynamic activity measured by an ex vivo LPS challenge assay, demonstrated dose-dependence for both E5564 and LPS and plasma levels of approximately 3 microg/ml E5564 or greater blocked up to 1 ng/ml LPS.

Conclusions: Every 12-h dosing of E5564 can replace continuous infusion, while maintaining uninterrupted blocking of high-dose LPS.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1753425908099173DOI Listing

Publication Analysis

Top Keywords

eritoran tetrasodium
12
plasma levels
12
pharmacodynamic activity
8
levels microg/ml
8
lps
6
e5564
5
continuous pharmacodynamic
4
activity eritoran
4
tetrasodium tlr4
4
tlr4 antagonist
4

Similar Publications

Toll-like receptors (TLRs) are among the players of inflammation during atherosclerosis. We assessed the effects of Eritoran, a TLR-4 antagonist, on lipopolysaccharide (LPS)-induced cytokines production by Peripheral Blood Mononuclear Cells (PBMCs) of patients with high-stenosis (HS) (n = 6) and healthy controls (HCs) (n = 6) co-cultured with Human Umbilical Vein Endothelial Cells (HUVECs). LPS stimulation significantly increased the levels of IL-6 (P = 0.

View Article and Find Full Text PDF

E5564 inhibits immunosuppressive cytokine IL-10 induction promoted by HIV-1 Tat protein.

Virol J

December 2014

Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé (CPBS), UMR5236, CNRS - Université Montpellier 1-Montpellier 2, Montpellier, France.

Background: In HIV-1 infected patients, production of interleukin-10 (IL-10), a highly immunosuppressive cytokine, is associated with progression of infection toward AIDS. HIV-1 Tat protein, by interacting with TLR4-MD2 at the membrane level, induces IL-10 production by primary human monocytes and macrophages. In the present study we evaluated the effect of the TLR4 antagonist Eritoran tetrasodium (E5564) on HIV-1 Tat-induced IL-10 production.

View Article and Find Full Text PDF

Toll-like receptor 4 (TLR4) is ubiquitously expressed on parenchymal and immune cells of the liver and is the most studied TLR responsible for the activation of proinflammatory signaling cascades in liver ischemia and reperfusion (I/R). Since pharmacological inhibition of TLR4 during the sterile inflammatory response of I/R has not been studied, we sought to determine whether eritoran, a TLR4 antagonist trialed in sepsis, could block hepatic TLR4-mediated inflammation and end organ damage. When C57BL/6 mice were pretreated with eritoran and subjected to warm liver I/R, there was significantly less hepatocellular injury compared to control counterparts.

View Article and Find Full Text PDF

Eritoran attenuates tissue damage and inflammation in hemorrhagic shock/trauma.

J Surg Res

October 2013

Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Trauma Surgery, University of Heidelberg, Heidelberg, Germany.

Background: Severe injury and associated hemorrhagic shock lead to an inflammatory response and subsequent increased tissue damage. Numerous reports have shown that injury-induced inflammation and the associated end-organ damage is driven by Toll-like receptor 4 (TLR4) activation via damage-associated molecular patterns. We examined the effectiveness of Eritoran tetrasodium (E5564), an inhibitor of TLR4 function, in reducing inflammation induced during hemorrhagic shock with resuscitation (HS/R) or after peripheral tissue injury (bilateral femur fracture, BFF).

View Article and Find Full Text PDF

Objective: To determine the role of toll like receptor-4 signal pathways activation in ischemia-reperfusion injury of island skin flap.

Methods: A totol of 50 adult male SD rats were randomized into 3 groups: sham-operated group (n=10), ischemia/reperfusion group (n=20) and TLR4 inhibitor-eritoran tetrasodium (E5564)-treated group (n=20). The inguinal island skin flaps models were set up.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!