We examined whether impairment of intracellular Ca(2+) homeostasis is related to poor embryo development in in vitro-aged oocytes. We found that in vitro aging of mouse oocytes affected the patterns of Ca(2+) oscillations at fertilization: these Ca(2+) oscillations were lower in amplitude and higher in frequency compared with oocytes without in vitro aging. We also observed that the intracellular Ca(2+) store was decreased in in vitro-aged oocytes. A decrease in the Ca(2+) store induced by thapsigargin, a specific endoplasmic reticulum (ER) membrane Ca(2+)-ATPase inhibitor, resulted in a lower fertilization rate and in poorer embryo development. The frequency of Ca(2+) oscillations was significantly increased at fertilization, whereas their amplitude was decreased in thapsigargin-treated oocytes. These results suggest that impairment of intracellular Ca(2+) homeostasis (such as a decrease in the ER Ca(2+) store) caused an alteration in Ca(2+) oscillations and the poor embryo development in in vitro-aged oocytes. Because embryo fragmentation is closely related to apoptosis, we examined expression of BAX (a proapototic protein) and BCL2 (an antiapoptotic protein) in in vitro-aged oocytes. Although BCL2 was strongly expressed in oocytes without in vitro aging, expression of BCL2 was significantly reduced in oocytes of other culture conditions and treatments such as those in in vitro aging and those that were pretreated with H(2)O(2) or thapsigargin. Acting together, alteration in Ca(2+) oscillations and decrease in BCL2 expression in in vitro-aged oocytes may lead to poor embryo development.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.108.072017DOI Listing

Publication Analysis

Top Keywords

embryo development
20
vitro-aged oocytes
20
ca2+ oscillations
20
poor embryo
16
vitro aging
16
intracellular ca2+
12
oocytes vitro
12
ca2+ store
12
oocytes
11
ca2+
10

Similar Publications

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Background: Preimplantation embryos in vivo are exposed to various growth factors in the female reproductive tract that are absent in in vitro embryo culture media. Cell-free fat extract exerts antioxidant, anti-ageing, and ovarian function-promoting effects. However, its effects on embryo quality are yet to be investigated.

View Article and Find Full Text PDF

Sperm-borne small non-coding RNAs: potential functions and mechanisms as epigenetic carriers.

Cell Biosci

January 2025

Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.

Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations.

View Article and Find Full Text PDF

Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.

View Article and Find Full Text PDF

Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.

Sci China Life Sci

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.

Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!