AI Article Synopsis

  • Embryonic stem cells (ESCs) can remain undifferentiated and have the ability to develop into various cell types from the three germ layers, making them valuable for research and potential medical applications.
  • Researchers successfully derived permanent canine ESC lines from early-stage embryos, which show similarities to human ESCs in terms of specific protein expression and cell characteristics.
  • These canine ESCs also demonstrated the ability to form different cell types in lab settings and teratomas in living organisms, presenting opportunities to investigate ESC-based treatments for human diseases using large animal models.

Article Abstract

Embryonic stem cells (ESCs) represent permanent cell lines that can be maintained in an undifferentiated state. In an environment that induces differentiation, they form derivatives of the three embryonic germ layers: mesoderm, ectoderm, and endoderm. These characteristics give ESCs great potential for both basic research and clinical applications in the areas of regenerative medicine and tissue engineering. The establishment of ESCs from large animals that model human diseases is of significant importance. We describe the derivation of permanent canine cell lines from preimplantation-stage embryos. Similar to human ESCs, canine ESCs expressed OCT3/4, NANOG, SOX2, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, and alkaline phosphatase, whereas they expressed very low levels of SSEA-1. They maintained a normal karyotype and morphology typical of undifferentiated ESCs after multiple in vitro passages and rounds of cryopreservation. Plating cells in the absence of a feeder layer, either in attachment or suspension culture, resulted in the formation of embryoid bodies and their differentiation to multiple cell types. In vivo, canine ESCs gave rise to teratomas comprising cell types of all three embryonic germ layers. These cells represent the first pluripotent canine ESC lines with both in vitro and in vivo differentiation potential and offer the exciting possibility of testing the efficacy and safety of ESC-based therapies in large animal models of human disease.

Download full-text PDF

Source
http://dx.doi.org/10.1634/stemcells.2008-0433DOI Listing

Publication Analysis

Top Keywords

cell lines
12
embryonic stem
8
lines vitro
8
vitro vivo
8
vivo differentiation
8
differentiation potential
8
three embryonic
8
embryonic germ
8
germ layers
8
canine escs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!