Confinement of a hydrophilic polymer in membrane lyotropic phases.

J Colloid Interface Sci

Departamento de Física, Universidad de Sonora, Apdo. Postal 1626, 83000 Hermosillo, Sonora, Mexico.

Published: March 2009

We study the confinement of a hydrophilic polymer (polyethylene glycol or PEG) between the bilayers of the zwitterionic surfactant tetradecyldimethyl aminoxide (C(14)DMAO). Small angle X-ray scattering and electron microscopy experiments show that the polymer modifies the physical properties of the lyotropic smectic (L(alpha)) phase. The observed effects are similar to those reported for anchored hydrophobically-modified polymers, indicating a strong interaction between PEG and the C(14)DMAO bilayers. Self-diffusion experiments performed in the lyotropic sponge (L(3)) phase show that the polymer adsorbs onto the surfactant membranes. This adsorption explains earlier observations: high polymer concentrations decrease the Gaussian rigidity of the membranes and a vesicular phase is stabilized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2008.11.020DOI Listing

Publication Analysis

Top Keywords

confinement hydrophilic
8
hydrophilic polymer
8
polymer
5
polymer membrane
4
membrane lyotropic
4
lyotropic phases
4
phases study
4
study confinement
4
polymer polyethylene
4
polyethylene glycol
4

Similar Publications

The self-assembly of macromolecular segments promotes the fabrication of polymer microspheres with multiple morphologies. Inspired by the xanthium shells, A dual-driven self-assembly method have defined that enables the construction of multi-dimensional morphologies on the microsphere surface at emulsion-confined interfaces. The two driving forces are derived from the phase separation caused by the immiscibility of macromolecular segments and the different interactions between chain segments of different hydrophilicity and water molecules.

View Article and Find Full Text PDF

The Friedel-Crafts reaction has been extensively applied to the preparation of various porous organic polymers because of its simple operation and abundant building blocks. However, due to its poor reversibility and excessive random reactive sites, the synthesis of crystalline organic polymers/frameworks by Friedel-Crafts reaction has never been realized so far. Herein, we develop a molecular confined Friedel-Crafts reaction strategy to achieve rapid preparation (within only 30 minutes) of highly crystalline covalent triazine frameworks (CTFs) with tailorable functionality for the first time.

View Article and Find Full Text PDF

Molecular engineering of supramolecular polymer adhesive with confined water and a single crown ether.

Chem Sci

December 2024

Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Centre of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China

Here, we report a water-induced supramolecular polymer adhesive formed from confined water and an intrinsically amphiphilic macrocyclic self-assembly in a nanophase-separated structure. The selenium-containing crown ether macrocycle, featuring a strong hydrophilic hydrogen-bond receptor (selenoxide) and a synergistic hydrophobic selenium-substituted crown core, confines water within a segregated, interdigitated architecture. While water molecules typically freeze around 0 °C, the confined water in this supramolecular polymer remains in a liquid-like state down to -80 °C.

View Article and Find Full Text PDF

The therapeutic window of antibody drug-conjugates (ADC) remains challenging due to safety issues such as interstitial lung disease (ILD) observed with specific deruxtecan-based ADCs. To avoid ILD, we designed M9140 by conjugating the maleimide-containing hydrophilic β-glucuronide linker to exatecan and our anti-CEACAM5 (CarcinoEmbryonic Antigen-related Cell Adhesion Molecule 5) specific antibody. Following repeated iv-infusion at 3 to 30 mg/kg of M9140 every 3 weeks, the pathological findings obtained in cynomolgus monkeys were confined to gastrointestinal and hematolymphoid tissues and resembled the toxicity of exatecan.

View Article and Find Full Text PDF

Carbon Defects as Highly Active Sites for Gold Detection and Recovery.

Angew Chem Int Ed Engl

January 2025

MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China.

The use of precious metals (PMs) in many areas, such as printed circuit boards, catalysts, and target drugs, is increasing due to their unique physical and chemical properties, but their recovery remains a great challenge in terms of zero-valent PMs as the final product. We report a highly hydrophilic carbon dot (CD) as a reductant (electron donor), in which the defects in CD served as efficient active sites for zero-valent PMs recovery with an electron-donating capacity of ~1.7 mmol g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!