The effect of methyl mercuric chloride (MeHg) on short-circuit current (I(SC)) was studied in the isolated perfused epipodite preparation from the branchial chamber of European lobster (Homarus gammarus) acclimated to dilute seawater. When applied at the apical surface, 0.2, 1.0 and 3.0 microM MeHg depressed I(SC) by a 26%, 81% and 98%, respectively. The half-maximal inhibitory concentration (IC(50)) of apically applied MeHg was 0.6 microM. Basolaterally added MeHg (3.0 microM) had no effect on I(SC), whereas addition of the specific Na(+),K(+)-ATPase inhibitor ouabain (1.5 mM) reduced I(SC) by approximately 90%. Ouabain effects were reversible, and I(SC) fully recovered upon removal of ouabain. The MeHg-induced block of I(SC) was partially reversed by the reducing agent, 1,4-dithiothreitol, suggesting that the formation of S-Hg-S bridges is important in the inhibitory mechanism. A significant reduction of I(SC) and conductance occurred when low Na(+) and Cl(-) salines were substituted. Furthermore, in the low Na(+) saline, J(Cl)(A-->B) fluxes were reduced by about 50%. In the highly conductive epipodite epithelium, coupling of Na(+) and Cl(-) fluxes was suggested. The effects of MeHg on I(SC) in the lobster epipodite are attributed to inhibition of an apical Cl(-) influx.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2008.11.001DOI Listing

Publication Analysis

Top Keywords

short-circuit current
8
cl- influx
8
european lobster
8
lobster homarus
8
homarus gammarus
8
isc
8
mehg microm
8
low na+
8
na+ cl-
8
mehg
5

Similar Publications

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

Photovoltaic arrays are exposed to outdoor conditions year-round, leading to degradation, cracks, open circuits, and other faults. Hence, the establishment of an effective fault diagnosis system for photovoltaic arrays is of paramount importance. However, existing fault diagnosis methods often trade off between high accuracy and localization.

View Article and Find Full Text PDF

Computational Study of Chalcogenide-Based Perovskite Solar Cell Using SCAPS-1D Numerical Simulator.

Materials (Basel)

January 2025

Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.

Perovskite solar cells (PSCs) are regarded as extremely efficient and have significant potential for upcoming photovoltaic technologies due to their excellent optoelectronic properties. However, a few obstacles, which include the instability and high costs of production of lead-based PSCs, hinder their commercialization. In this study, the performance of a solar cell with a configuration of FTO/CdS/BaZrS/HTL/Ir was optimized by varying the thickness of the perovskite layer, the hole transport layer, the temperature, the electron transport layer (ETL)'s defect density, the absorber defect density, the energy band, and the work function for back contact.

View Article and Find Full Text PDF

Perovskite solar cell (PSC) technology holds great promise with continuously improving power conversion efficiency; however, the use of metal electrodes hinders its commercialization and the development of tandem designs. Although single-walled carbon nanotubes (SWCNTs), as one-dimensional materials, have the potential to replace metal electrodes in PSCs, their poor conductivity still limits their application. In this study, the near-infrared (NIR)-absorbing anionic heptamethine cyanine dye-doped SWCNTs functioned in a dual role as an efficient charge-selective layer and electrode in PSCs.

View Article and Find Full Text PDF

Semitransparent perovskite solar cells (ST-PSCs) for building-integrated photovoltaics (BIPV) face the challenge of achieving high efficiency due to significant light loss. The SnO2 electron transport layer (ETL), utilized in n-i-p PSCs and prepared via the sol-gel method, is susceptible to aggregation on substrate, resulting in light scattering that diminishes absorption of the perovskite layer. In this study, we propose a strategy that combines atomic layer deposition (ALD) and sol-gel solution to deposit a bilayer SnO2 structure to address these issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!