We have previously identified a homozygous missense (R221W) mutation in the NGFB gene in patients with loss of deep pain perception. NGF is important not only for the survival of sensory neurons but also for the sympathetic neurons and cholinergic neurons of the basal forebrain; however, it is the sensory neurons that are mainly affected in patients with mutant NGFB. In this report, we describe the effects of the mutation on the function of NGF protein and the molecular mechanisms that may underlie the pain insensitivity phenotype in these patients. We show that the mutant NGF has lost its ability to mediate differentiation of PC12 cells into a neuron-like phenotype. We also show that the inability of PC12 cells to differentiate is due to a markedly reduced secretion of mature R221W NGF. The R221W NGF is found mainly as proNGF, in contrast to wild-type NGF which is predominantly in the mature form in both undifferentiated and differentiated PC12 cells. The reduction in numbers of sensory fibers observed in the patients is therefore probably due to loss of trophic support as a result of drastically reduced secretion of NGF from the target organs. Taken together, these data show a clear decrease in the availability of mutant mature NGF and also an accumulation of proNGF in both neuronal and non-neuronal cells. The differential loss of NGF-dependent neurons in these patients, mainly affecting sensory neurons, may depend on differences in the roles of mature NGF and proNGF in different cells and tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2008.10.012 | DOI Listing |
Nat Commun
January 2025
Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genova, Italy.
The lack of effective therapies for visual restoration in Retinitis pigmentosa and macular degeneration has led to the development of new strategies, such as optogenetics and retinal prostheses. However, visual restoration is poor due to the massive light-evoked activation of retinal neurons, regardless of the segregation of visual information in ON and OFF channels, which is essential for contrast sensitivity and spatial resolution. Here, we show that Ziapin2, a membrane photoswitch that modulates neuronal capacitance and excitability in a light-dependent manner, is capable of reinstating, in mouse and rat genetic models of photoreceptor degeneration, brisk and sluggish ON, OFF, and ON-OFF responses in retinal ganglion cells evoked by full-field stimuli, with reactivation of their excitatory and inhibitory conductances.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK. Electronic address:
Neurons in primary visual cortex (V1) show a remarkable functional specificity in their pre- and postsynaptic partners. Recent work has revealed a variety of wiring biases describing how the short- and long-range connections of V1 neurons relate to their tuning properties. However, it is less clear whether these connectivity rules are based on some underlying principle of cortical organization.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA; Center for Translational Research and Education, Health Sciences Campus, 2160 South First Avenue, Maywood, IL 60153, USA. Electronic address:
Neuronal membrane proteasomes (NMPs) are expressed on a subset of somatosensory dorsal root ganglion (DRG) neurons and influence mechanical and pain sensitivity. Here, we present a protocol for studying NMP function in mouse peripheral sensory neurons. We describe steps for procuring and culturing primary DRG neurons.
View Article and Find Full Text PDFJ Clin Med
January 2025
Children's Hospital, Taif Health Cluster, Taif 26514, Saudi Arabia.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is closely related to SARS-CoV and uses angiotensin-converting enzyme 2 as its cellular receptor. In early 2020, reports emerged linking CoV disease 2019 (COVID-19) to olfactory and gustatory disturbances. These disturbances could be attributed to virus-induced damage to olfactory neurons or immune responses, thereby affecting sensory functions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic.
CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!