Heme oxygenases (HO) are the rate-limiting enzymes in the degradation of heme to equimolar amounts of antioxidant bile pigments, the signaling molecule carbon monoxide, and ferric iron. The inducible form HO-1 confers protection on cells and tissues that mediates beneficial effects in many diseases. Consequently, measurement of the enzymatic activity is vital in the investigation of the regulatory role of HO. Here we report that the fluorescence characteristics of bilirubin in complex with serum albumin can be used for the real-time detection of HO activity in enzymatic kinetics measurements. We characterized the enzymatic activity of a truncated human HO-1 and measured the HO activity for various cell types and organs, in either the basal naive or the HO-1-induced state. The bilirubin-dependent increase in fluorescence over time monitored by this assay facilitates a very fast, sensitive, and reliable measurement of HO activity. Our approach offers the basis for a highly sensitive high-throughput screening, which provides, inter alia, the opportunity to discover new therapeutic HO-1-inducing agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2008.10.044 | DOI Listing |
Int J Surg
January 2025
Carcinoma Department of Traditional Chinese Medicine, Dianjiang People's Hospital of Chongqing, Chongqing, PR China.
The widespread adoption of high-resolution computed tomography (CT) screening has led to increased detection of small pulmonary nodules, necessitating accurate localization techniques for surgical resection. This review examines the evolution, efficacy, and safety of various localization methods for small pulmonary nodules. Studies focusing on localization techniques for pulmonary nodules ≤30 mm in diameter were included, with emphasis on technical success rates and complication profiles.
View Article and Find Full Text PDFDrug Saf
January 2025
Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark.
Introduction: Large administrative healthcare databases can be used for near real-time sequential safety surveillance of drugs as an alternative approach to traditional reporting-based pharmacovigilance. The study aims to build and empirically test a prospective drug safety monitoring setup and perform a sequential safety monitoring of rofecoxib use and risk of cardiovascular outcomes.
Methods: We used Danish population-based health registers and performed sequential analysis of rofecoxib use and cardiovascular outcomes using case-time-control and cohort study designs from January 2000 to September 2004.
Trop Anim Health Prod
January 2025
Department of Agricultural Biotechnology, Faculty of Agriculture, Kırşehir Ahi Evran University, 40100, Kirsehir, Türkiye.
The present study was conducted on specific skeletal muscles of six weaned male kids from each of the Angora, Hair, Honamlı, and Kilis goat breeds. The relationships between the expression of myogenic factor 5 (Myf5) and myogenic factor 6 (Myf6) genes and muscle fibre characteristics were analysed. Muscle samples from the longissimus dorsi (LD) and semitendinosus (ST) were collected from six 90-day-old weaned male kids of each breed.
View Article and Find Full Text PDFAnal Chem
January 2025
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.
Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!