The metabolism and active transport of ritonavir and saquinavir were studied using sandwich-cultured rat hepatoyctes and rat liver microsomes. For ritonavir four comparable metabolites were observed in the sandwich-culture and in microsomes. For saquinavir eight metabolites were observed in sandwich-culture and 14 different metabolites in microsomes. Ketoconazole did not affect the metabolism of ritonavir in sandwich-culture or microsomes and slightly inhibited the metabolism of saquinavir in sandwich-culture. This inhibition resulted in a different metabolite profile for saquinavir in microsomes. Ritonavir had a pronounced inhibiting effect on the metabolism of saquinavir and affected the hydroxylation of 6beta-testosterone negatively. In the active transport studies, cyclosporin A and PSC833 enhanced the metabolism of ritonavir, suggesting that ritonavir is normally excreted into the bile canaliculi. Verapamil, showed no effect on the metabolism of ritonavir. The intrinsic clearance was estimated at 1.65 and 67.5 microl/min/1 x 10(6) cells and the hepatic metabolism clearance at 0.017 and 6.83ml/min/SRW for ritonavir and saquinavir respectively. In conclusion, for saquinavir the metabolism rate and the amount of metabolites produced was higher than for ritonavir. Ritonavir had a strong inhibitory effect on the metabolism of saquinavir and seemed to be excreted into the bile.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2008.11.001DOI Listing

Publication Analysis

Top Keywords

ritonavir saquinavir
12
metabolism ritonavir
12
metabolism saquinavir
12
ritonavir
11
saquinavir
9
metabolism
9
sandwich-cultured rat
8
active transport
8
microsomes ritonavir
8
metabolites observed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!