A familial form of Creutzfeldt-Jakob disease (CJD) is linked to the D178N/V129 prion protein (PrP) mutation. Tg(CJD) mice expressing the mouse homolog of this mutant PrP synthesize a misfolded form of the mutant protein, which is aggregated and protease resistant. These mice develop clinical and pathological features reminiscent of CJD, including motor dysfunction, memory impairment, cerebral PrP deposition, and gliosis. Tg(CJD) mice also display electroencephalographic abnormalities and severe alterations of sleep-wake patterns strikingly similar to those seen in a human patient carrying the D178N/V129 mutation. Neurons in these mice show swelling of the endoplasmic reticulum (ER) with intracellular retention of mutant PrP, suggesting that ER dysfunction could contribute to the pathology. These results establish a transgenic animal model of a genetic prion disease recapitulating cognitive, motor, and neurophysiological abnormalities of the human disorder. Tg(CJD) mice have the potential for giving greater insight into the spectrum of neuronal dysfunction in prion diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2008.09.008DOI Listing

Publication Analysis

Top Keywords

tgcjd mice
12
prion protein
8
mutant prp
8
mice
5
mutant
4
mutant prion
4
protein expression
4
expression motor
4
motor memory
4
memory deficits
4

Similar Publications

Inhibition of IL-1β Signaling Normalizes NMDA-Dependent Neurotransmission and Reduces Seizure Susceptibility in a Mouse Model of Creutzfeldt-Jakob Disease.

J Neurosci

October 2017

Department of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy, and

Creutzfeldt-Jakob disease (CJD) is a neurodegenerative disorder caused by prion protein (PrP) misfolding, clinically recognized by cognitive and motor deficits, electroencephalographic abnormalities, and seizures. Its neurophysiological bases are not known. To assess the potential involvement of NMDA receptor (NMDAR) dysfunction, we analyzed NMDA-dependent synaptic plasticity in hippocampal slices from Tg(CJD) mice, which model a genetic form of CJD.

View Article and Find Full Text PDF

Fatal familial insomnia (FFI) and a genetic form of Creutzfeldt-Jakob disease (CJD178) are clinically different prion disorders linked to the D178N prion protein (PrP) mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known.

View Article and Find Full Text PDF

A familial form of Creutzfeldt-Jakob disease (CJD) is linked to the D178N/V129 prion protein (PrP) mutation. Tg(CJD) mice expressing the mouse homolog of this mutant PrP synthesize a misfolded form of the mutant protein, which is aggregated and protease resistant. These mice develop clinical and pathological features reminiscent of CJD, including motor dysfunction, memory impairment, cerebral PrP deposition, and gliosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!