Advanced glycation end products (AGEs) have been linked to the pathogenesis of diabetic nephropathy. Here we tested the effect of AGE-modified bovine serum albumin (AGE-BSA) on differentiated mouse podocytes in culture. Differential display and real-time PCR analyses showed that in addition to neuropilin-1, the entire signaling receptor complex of neuropilin-2, semaphorin-3A, and plexin-A1, was significantly reduced by AGE-BSA as was neuropilin-1 protein. The effect was specific for podocytes compared to isolated mesangial and tubular epithelial cells. Further, AGE-BSA was not toxic to podocytes. Neuropilin-1 expression was decreased in glomeruli of diabetic db/db mice compared to their non-diabetic littermates. Transcripts of both neuropilins were found to be decreased in renal biopsies from patients with diabetic nephropathy compared to transplant donors. Podocyte migration was inhibited by AGE-BSA with similar results found in the absence of AGE-BSA when neuropilin-1 expression was down-regulated by siRNA. In contrast, podocyte migration was stimulated by overexpression of neuropilin-1 even in the presence of AGE-BSA. Our study shows that AGE-BSA inhibited podocyte migration by down-regulating neuropilin-1. The decreased migration could lead to adherence of uncovered areas of the glomerular basement membrane to Bowman's capsule contributing to focal glomerulosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ki.2008.603DOI Listing

Publication Analysis

Top Keywords

neuropilin-1 expression
12
podocyte migration
12
advanced glycation
8
diabetic nephropathy
8
age-bsa neuropilin-1
8
neuropilin-1
7
age-bsa
7
glycation end-products
4
end-products suppress
4
suppress neuropilin-1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!