Alzheimer's disease (AD) is the most prevalent form of dementia, resulting in progressive neuronal death and debilitating damage to brain loci that mediate memory and higher cognitive function. While pathogenic genetic mutations have been implicated in approximately 2% of AD cases, the proximal events that underlie the common, sporadic form of the disease are incompletely understood. Converging lines of evidence from human neuropathology, basic biology, and genetics have implicated loss of the multifunctional receptor LR11 (also known as SORLA and SORL1) in AD pathogenesis. Cell-based studies suggest that LR11 reduces the formation of beta-amyloid (Abeta), the molecule believed to be a primary toxic species in AD. Recently, mutant mice deficient in LR11 were shown to upregulate murine Abeta in mouse brain. In the current study, LR11-deficient mice were crossed with transgenic mice expressing autosomal-dominant human AD genes, presenilin-1 (PS1DeltaE9) and amyloid precursor protein (APPswe). Here, we show that LR11 deficiency in this AD mouse model significantly increases Abeta levels and exacerbates early amyloid pathology in brain, causing a forward shift in disease onset that is LR11 gene dose-dependent. Loss of LR11 increases the processing of the APP holo-molecule into alpha-, beta-, and gamma-secretase derived metabolites. We propose that LR11 regulates APP processing and Abeta accumulation in vivo and is of proximal importance to the cascade of pathological amyloidosis. The results of the current study support the hypothesis that control of LR11 expression may exert critical effects on Alzheimer's disease susceptibility in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2669320PMC
http://dx.doi.org/10.1523/JNEUROSCI.4582-08.2008DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
mouse model
8
lr11
8
current study
8
disease
5
loss lr11/sorla
4
lr11/sorla enhances
4
enhances early
4
early pathology
4
pathology mouse
4

Similar Publications

Background: The success of selecting high risk or early-stage Alzheimer's disease individuals for the delivery of clinical trials depends on the design and the appropriate recruitment of participants. Polygenic risk scores (PRS) show potential for identifying individuals at risk for Alzheimer's disease (AD). Our study comprehensively examines AD PRS utility using various methods and models.

View Article and Find Full Text PDF

Depressive symptoms in older adults are associated with changes in stress-related markers, functional connectivity and brain volume.

Alzheimers Res Ther

January 2025

Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, Bd Henri Becquerel, BP 5229, Caen, 14074, France.

Background: Subclinical depressive symptoms increase the risk of developing Alzheimer's disease (AD). The neurobiological mechanisms underlying this link may involve stress system dysfunction, notably related to the hippocampus which is particularly sensitive to AD. We aimed to investigate the links between blood stress markers and changes in brain regions involved in the stress response in older adults with or without subclinical depressive symptoms.

View Article and Find Full Text PDF

Background: Changes in amyloid beta (Aβ) and phosphorylated tau brain levels are known to affect brain network organization but very little is known about how plasma markers can relate to these measures. We aimed to address the relationship between centrality network changes and two plasma pathology markers: phosphorylated tau at threonine 231 (p-tau231), a proxy for early Aβ change, and neurofilament light chain (Nfl), a marker of axonal degeneration.

Methods: One hundred and four cognitively unimpaired individuals were divided into a high pathology load (33 individuals; HP) group and a low pathology (71 individuals; LP) one.

View Article and Find Full Text PDF

Insulin resistance is a condition characterized by the attenuated biological response in the presence of normal or elevated insulin level and therefore is characterized by the impaired sensitivity to insulin and impaired glucose disposal and utilization. Insulin resistance in brain/Brain insulin resistance (BIR) is accompanied by the various manifestations including alteration in glucose sensing by hypothalamic neurons, impaired sympathetic outflow in response to hypoglycemia, increased ROS production, impaired mitochondrial oxygen consumption in the brain, cognitive deficits and neuronal cell damage. It has been reported that the disrupted insulin signaling is accompanied by the reduced expression of insulin receptor (IR)/insulin receptor substrate 1 (IRS1)/PI3K/AKT and IGF-1 receptor (IGF-1R)/IRS2/PI3K pathways.

View Article and Find Full Text PDF

Patients with dementia with Lewy bodies display a signature alteration of their cognitive connectome.

Sci Rep

January 2025

Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden.

Cognition plays a central role in the diagnosis and characterization of dementia with Lewy bodies (DLB). However, the complex associations among cognitive deficits in different domains in DLB are largely unknown. To characterize these associations, we investigated and compared the cognitive connectome of DLB patients, healthy controls (HC), and Alzheimer's disease patients (AD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!