Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2588415PMC
http://dx.doi.org/10.1073/pnas.0808116105DOI Listing

Publication Analysis

Top Keywords

sars-like coronavirus
8
reservoir species
8
design synthesis
8
synthesis recovery
8
synthetic recombinant
4
recombinant bat
4
bat sars-like
4
coronavirus infectious
4
infectious cultured
4
cultured cells
4

Similar Publications

Background: This study investigated the impact of posaconazole (POSA) prophylaxis in COVID-19 patients with acute respiratory failure receiving systemic corticosteroids on the risk for the development of COVID-19-associated pulmonary aspergillosis (CAPA).

Methods: The primary aim of this prospective, multicentre, case-control study was to assess whether application of POSA prophylaxis in mechanically ventilated COVID-19 patients reduces the risk for CAPA development. All consecutive patients from centre 1 (cases) who received POSA prophylaxis as standard-of-care were matched to one subject from centre 2 and centre 3 who did not receive any antifungal prophylaxis, using propensity score matching for the following variables: (i) age, (ii) sex, (iii) treatment with tocilizumab and (iv) time at risk.

View Article and Find Full Text PDF

Background: Nonpharmaceutical interventions for coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, during the pandemic altered the epidemiology of respiratory viruses. This study aimed to determine the changes in respiratory viruses among children hospitalized from 2018 to 2023.

Methods: Nasopharyngeal specimens were collected from children aged under 15 years with fever and/or respiratory symptoms admitted to a medical institution in Fukushima Prefecture between January 2018 and December 2023.

View Article and Find Full Text PDF

Resurgence of common respiratory viruses and mycoplasma pneumoniae after ending the zero-COVID policy in Shanghai.

Sci Rep

January 2025

Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Rd, Minhang District, Shanghai, 201102, China.

China has adhered to policies of zero-COVID for almost three years since the outbreak of COVID-19, which has remarkably affected the circulation of respiratory pathogens. However, China has begun to end the zero-COVID policies in late 2022. Here, we reported a resurgence of common respiratory viruses and Mycoplasma pneumoniae with unique epidemiological characteristics among children after ending the zero-COVID policy in Shanghai, China, 2023.

View Article and Find Full Text PDF

Background: The global pandemic caused by SARS-CoV-2 has resulted in millions of people experiencing long COVID condition, a range of persistent symptoms following the acute phase, with an estimated prevalence of 27%-64%.

Materials And Methods: To understand its pathophysiology, we conducted a longitudinal study on viral load and cytokine dynamics in individuals with confirmed SARS-CoV-2 infection. We used reverse transcriptase droplet digital PCR to quantify viral RNA from nasopharyngeal swabs and employed multiplex technology to measure plasma cytokine levels in a cohort of people with SARS-CoV-2 infection.

View Article and Find Full Text PDF

A broadly neutralizing antibody against the SARS-CoV-2 Omicron sub-variants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5.

Signal Transduct Target Ther

January 2025

NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.

The global spread of Severe Acute Respiratory Syndrome Coronavirus 2. (SARS-CoV-2) and its variant strains, including Alpha, Beta, Gamma, Delta, and now Omicron, pose a significant challenge. With the constant evolution of the virus, Omicron and its subtypes BA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!