The structures of multi-wall carbon nanotubes (MWNTs) were modified by H(2)SO(4)-HNO(3) and H(2)SO(4)-H(2)O(2), respectively. The corresponding products were water-soluble MWNTs-A and MWNTs-B. According to the experiment, it was found that MWNTs-B could emit stable solid substrate-room temperature phosphorescence (RTP) on the surface of paper with Ag(+) as perturber. Under the conditions of 70 degrees C and 15 min, MWNTs-B can react with Tween-80 and p-nitro-phenyl-fluorone (R) to form R-MWNTs-B-Tween-80 micellae compound, which could emit RTP of R and MWNTs-B on the surface of paper, respectively. Pb(2+) could cause the RTP of R and MWNTs-B enhanced sharply, respectively. DeltaI(p) is directly proportional to the content of Pb(2+). A new solid substrate-room temperature phosphorimetry (SS-RTP) for the determination of trace Pb(2+) has been established based on R-MWNTs-B-Tween-80 micellae compound containing double luminescent molecule. The detection limit of this method were 0.035 ag Pb(2+) spot(-1) (8.8 x 10(-17) g Pb(2+) ml(-1), MWNTs-B) and 0.028 ag Pb(2+) spot(-1) (7.1 x 10(-17) g Pb(2+) ml(-1), R). This method is of high sensitivity, good selectivity, high precision and accuracy. It could be applied to determine trace Pb(2+) in serum samples at wavelength of 453.7/623.0 nm (R) or 475.9/645.0 nm (MWNTs-B) with satisfactory results, showing that SS-RTP has flexibility and utility value. Simultaneously, this method can be used to diagnose human diseases. The reaction mechanism for the determination of trace Pb(2+) by SS-RTP based on R-MWNTs-B-Tween-80 micellae compound containing double luminescent molecule was also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2008.09.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!