Drought is the major environmental threat to agricultural production and distribution worldwide. Adaptation by plants to dehydration stress is a complex biological process that involves global changes in gene expression and metabolite composition. Here, using one type of functional genomics analysis, metabolomics, we characterized the metabolic phenotypes of Arabidopsis wild-type and a knockout mutant of the NCED3 gene (nc3-2) under dehydration stress. NCED3 plays a role in the dehydration-inducible biosynthesis of abscisic acid (ABA), a phytohormone that is important in the dehydration-stress response in higher plants. Metabolite profiling performed using two types of mass spectrometry (MS) systems, gas chromatography/time-of-flight MS (GC/TOF-MS) and capillary electrophoresis MS (CE-MS), revealed that accumulation of amino acids depended on ABA production, but the level of the oligosaccharide raffinose was regulated by ABA independently under dehydration stress. Metabolic network analysis showed that global metabolite-metabolite correlations occurred in dehydration-increased amino acids in wild-type, and strong correlations with raffinose were reconstructed in nc3-2. An integrated metabolome and transcriptome analysis revealed ABA-dependent transcriptional regulation of the biosynthesis of the branched-chain amino acids, saccharopine, proline and polyamine. This metabolomics analysis revealed new molecular mechanisms of dynamic metabolic networks in response to dehydration stress.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-313X.2008.03748.xDOI Listing

Publication Analysis

Top Keywords

dehydration stress
16
amino acids
12
analysis revealed
8
dehydration
5
characterization aba-regulated
4
aba-regulated global
4
global responses
4
responses dehydration
4
dehydration arabidopsis
4
arabidopsis metabolomics
4

Similar Publications

Polyethylene glycol (PEG), especially at high molecular weights, is highly soluble in water, and these solutions have reduced water potential. It is convenient to use PEG in hydroponics (liquid nutrient solution) for experiments with plants. However, some authors have been found to describe the application of PEG to plants incorrectly, such as drought, dehydration, osmotic, or water stresses, which can mislead readers.

View Article and Find Full Text PDF

Characterization of main degradation products from dendrobine under stress conditions by multistage cleavage of UPLC-ESI-IT-TOF.

J Pharm Biomed Anal

January 2025

Department of Pharmaceutical Analysis, School of Pharmacy, Guizhou Medical University, Gui'an New District, Guizhou 561113, PR China. Electronic address:

Dendrobine is a sesquiterpene alkaloid primarily used in the treatment of inflammatory diseases, immune system disorders, and conditions related to oxidative stress. To understand the possible degradation pathways of dendrobine for its quality control, we conducted an in-depth investigation of its degradation products using forced degradation methods. The separation of dendrobine and its degradation products was achieved on a Shim-pack XR-ODS III (75 mm × 2 mm, 1.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

Prediction of the toughness of date palm fruit.

Sci Rep

January 2025

Department of Water Relations and Field Irrigation, Agricultural and Biological Research institute, National Research Centre, Giza, Egypt.

This study aimed to predict the toughness of date palm fruit (Barhi, Saqie, and Khodry varieties) at different ripening stages (Khalal, Rutab, and Tamar) using Hertz Theory by evaluating the physical and mechanical characteristics of the fruits. Physical measurements revealed that high moisture content in the Khalal stage led to larger dimensions and mass across all varieties, with Barhi dates showing a moisture content of 63.31%, which decreased to 32.

View Article and Find Full Text PDF

Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!