Several studies have shown that apoptotic pathways control fragmentation of unfertilized ovulated oocyte, induced by doxorubicin. But very few have investigated the basis of this process, from prophase I to later stages. Our results revealed the presence of caspase-2(L), caspase-9, and caspase-3 in their zymogen and cleaved forms in the oocyte before meiosis resumption. Caspase-2(L) and caspase-9 were detected in the nucleus of GV-oocytes in a distribution related to chromatin configuration. The inhibition of caspase activity by Z-VAD-fmk accelerated the transition from metaphase I to metaphase II, and caspase-9 and caspase-3 were detected along the meiotic spindle. Surprisingly, Western blot analysis revealed that the three cleaved caspases were present in similar amounts in healthy and fragmented oocytes and caspase inhibition did not prevent doxorubicin-induced apoptosis. Our results suggest that, if cleaved, caspases may be dispensable for final oocyte death and they could be involved in regulating the maturation process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.21793DOI Listing

Publication Analysis

Top Keywords

caspase-2l caspase-9
12
caspase-9 caspase-3
12
cleaved caspases
8
caspase-3 vitro
4
vitro maturation
4
maturation fragmentation
4
fragmentation mouse
4
oocyte
4
mouse oocyte
4
oocyte studies
4

Similar Publications

Although benzene, a well-known human carcinogen, has been shown to induce apoptosis in vitro, no studies have been carried out to confirm and characterize its role in activating apoptosis in vivo. The present study investigated the effects of benzene inhalation on the epithelial cells lining the respiratory tract including bronchioles, terminal bronchioles, respiratory bronchioles and alveoli of male Sprague-Dawley rats. Inhalation of benzene 300 ppm for 7 days induced apoptotic changes in the parenchymal components in the lung that significantly exceeded the events of programmed cell death in normal control tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!