Background: Modern lifestyle and urbanization have been associated with a raised risk for atopic diseases whereas early and long-term exposure to a farm environment confers protection against atopic sensitization. Immunomodulatory potential and microbiological characteristics of settled airborne dust from an urban house and a barn were examined.
Methods: Pulmonary inflammation was induced in mice by repeated intranasal administration of dusts. Monocyte-derived human dendritic cells (moDCs) were exposed to dusts followed by coculture with purified naïve T cells. Cytokine/chemokine mRNA and protein levels were analyzed by real-time polymerase chain reaction, enzyme-linked immunosorbent assay and flow cytometry. The dusts were analyzed by cloning and sequencing of 16S rRNA genes (290 sequences) for DNA, lipids, endotoxin and beta-glucan, by live-dead staining, viable counting, isolation and identification of pure cultures (n = 76).
Results: Repeated exposure to house dust elicited pulmonary eosinophilia in mice whereas exposure to barn dust elicited neutrophilic and lymphocytic airway inflammation. Stimulation of moDCs with urban house dust elicited expression of Th2-promoting OX40L and Jagged-1 costimulatory molecules. Dendritic cells (DCs) exposed to house dust directed naïve T cells towards Th2 responses. Exposure of DCs to barn dust elicited the development of Th1-dominated immune responses. Urban house dust contained bacterial debris almost exclusively of human commensal species (corynebacteria, streptococci) whereas barn dust comprised mainly intact, viable bacteria of high diversity and no commensal species.
Conclusion: Contact to debris originating from human commensal bacteria in urban house dust elicited a Th2-type response whereas barn dust with high bacterial diversity directed the cells towards a Th1 response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000176310 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFClin Transl Med
January 2025
Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.
Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.
Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.
Environ Res
January 2025
Henan Key Laboratory of Air Pollution Control and Ecological Security, Henan University, Kaifeng, Henan, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, Henan, 475004, China. Electronic address:
Dust aerosols significantly impact climate, human health, and ecosystems, but how land cover (LC) changes influence dust concentrations remains unclear. Here, we applied the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to assess the effects of LC changes on dust aerosol concentrations from 2000 to 2020 in northern China. Based on LC data derived from multi-source satellite remote sensing data, we conducted two simulation scenarios: one incorporating actual annual LC changes and another assuming static LC since 2000.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
Herbal dust, a waste byproduct from filter-tea production, was annealed to form ash that can be incorporated into natural rubber as an eco-friendly filler. Three types of herbal dust ash (HDA), green tea, hibiscus, and lemon balm, were added at two different contents, 2.5 and 5 phr, into the rubber compound, while the content of carbon black, as a filler, was maintained at 50 phr in all samples.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou, GR-15773 Athens, Greece.
The recycling of Carbon Fibre-Reinforced Polymers (CFRPs) is becoming increasingly crucial due to the growing demand for sustainability in high-performance industries such as automotive and aerospace. This study investigates the impact of two chemical recycling techniques, chemically assisted solvolysis and plasma-enhanced solvolysis, on the morphology and properties of carbon fibres (CFs) recovered from end-of-life automotive parts. In addition, the effects of fibre sizing are explored to enhance the performance of the recycled carbon fibres (rCFs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!