Low oxygen expansion improves subsequent chondrogenesis of ovine bone-marrow-derived mesenchymal stem cells in collagen type I hydrogel.

Cells Tissues Organs

Department of Cell Techniques and Applied Stem Cell Biology, Center of Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.

Published: September 2009

Background/objective: A crucial factor when investigating cartilage tissue engineering using mesenchymal stem cells (MSCs) is their application in large-animal models and preclinical trials. However, in vitro studies using cells of these model organisms must proceed. Considering that oxygen tension is an important parameter for stem cell culture, we investigated the effect of low oxygen tension during the expansion of ovine MSCs on colony-forming unit-fibroblast (CFU-F) formation, senescence and subsequent chondrogenesis in pellet culture and a collagen I hydrogel which is in clinical use for matrix-associated autologous chondrocyte transplantation (MACT).

Materials And Methods: Ovine MSCs were isolated from bone marrow aspirates and cultured at 5 and 20% O(2) in monolayer. CFU-F formation was detected by Giemsa staining. Senescence was analyzed by detection of senescence-associated beta-galactosidase and flow cytometry. Chondrogenic differentiation was carried out in pellet and collagen I hydrogel culture and assessed by gene expression, immunohistochemistry and measurement of sulfated glycosaminoglycans (sGAG).

Results: MSCs expanded at 5% O(2) revealed a 2-fold higher CFU-F potential and diminished senescence compared to those expanded at 20% O(2). Most notably, our results show enhanced chondrogenic differentiation in both pellet culture and the MACT-approved collagen I hydrogel.

Conclusion: The findings demonstrate that physiologically low oxygen tension during monolayer expansion of ovine MSCs is advantageous in order to improve cartilage tissue engineering in a sheep model. The ovine system is shown to represent an appropriate basis for large-animal studies and preclinical trials on MSC-based cartilage repair.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000178024DOI Listing

Publication Analysis

Top Keywords

low oxygen
12
oxygen tension
12
ovine mscs
12
subsequent chondrogenesis
8
mesenchymal stem
8
stem cells
8
cartilage tissue
8
tissue engineering
8
preclinical trials
8
expansion ovine
8

Similar Publications

The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.

View Article and Find Full Text PDF

Low-Level Fe Doping in CoMoO Enhances Surface Reconstruction and Electronic Modulation Creating an Outstanding OER Electrocatalyst for Water Splitting.

Inorg Chem

January 2025

Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.

Efficient and stable nonprecious metal-based oxygen evolution reaction (OER) electrocatalysts are pivotal for water electrolysis technology. Herein, we are reporting an effective strategy for fabricating efficient Co-based OER electrocatalysts by low-level Fe doping in CoMoO to boost surface reconstruction and electronic modulation, which resulted in excellent OER electroactivity consequently. Our findings reveal that a mere 5.

View Article and Find Full Text PDF

The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.

View Article and Find Full Text PDF

Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.

View Article and Find Full Text PDF

Mitochondria-localized dinuclear iridium(III) complexes for two-photon photodynamic therapy.

Dalton Trans

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.

Photodynamic therapy (PDT), as a non-invasive cancer treatment, offers significant advantages including high temporal-spatial selectivity, minimal surgical intervention, and low toxicity, thereby garnering considerable research interest from across the world. In this study, we have developed a series of dinuclear cyclometalated Ir(III) complexes as potential two-photon photodynamic anticancer agents. These Ir(III) complexes demonstrate significant two-photon absorption (2PA) cross-sections ( = 66-166 GM) and specifically target mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!