AMPA and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitro.

Eur J Neurosci

Department of Applied Science, McGlothlin Street Hall, Room 318, The College of William and Mary, Williamsburg, VA 23187-8795, USA.

Published: December 2008

AI Article Synopsis

Article Abstract

Excitatory transmission mediated by AMPA receptors is critical for respiratory rhythm generation. However, the role of AMPA receptors has not been fully explored. Here we tested the functional role of AMPA receptors in inspiratory neurons of the neonatal mouse preBötzinger complex (preBötC) using an in vitro slice model that retains active respiratory function. Immediately before and during inspiration, preBötC neurons displayed envelopes of depolarization, dubbed inspiratory drive potentials, that required AMPA receptors but largely depended on the Ca(2+)-activated non-specific cation current (I(CAN)). We showed that AMPA receptor-mediated depolarization opened voltage-gated Ca(2+) channels to directly evoke I(CAN). Inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca(2+) release also evoked I(CAN). Inositol 1,4,5-trisphosphate receptors acted downstream of group I metabotropic glutamate receptor activity but, here too, AMPA receptor-mediated Ca(2+) influx was essential to trigger the metabotropic glutamate receptor contribution to inspiratory drive potential generation. This study helps to elucidate the role of excitatory transmission in respiratory rhythm generation in vitro. AMPA receptors in preBötC neurons initiate convergent signaling pathways that evoke post-synaptic I(CAN), which underlies inspiratory drive potentials. The coupling of AMPA receptors with I(CAN) suggests that latent burst-generating intrinsic conductances are recruited by excitatory synaptic interactions among preBötC neurons in the context of respiratory network activity in vitro, exemplifying a rhythmogenic mechanism based on emergent properties of the network.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2008.06540.xDOI Listing

Publication Analysis

Top Keywords

ampa receptors
24
metabotropic glutamate
12
prebötc neurons
12
inspiratory drive
12
ampa
9
receptors
8
excitatory transmission
8
respiratory rhythm
8
rhythm generation
8
role ampa
8

Similar Publications

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Non-canonical Roles of Complement in the CNS: From Synaptic Organizer to Presynaptic Modulator of Glutamate Transmission.

Curr Neuropharmacol

January 2025

Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.

The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.

View Article and Find Full Text PDF

The zeta inhibitory peptide (ZIP) interferes with memory maintenance and long-term potentiation (LTP) when administered to mice. However, mice lacking its putative target, protein kinase PKMζ, exhibit normal learning and memory as well as LTP, making the mechanism of ZIP unclear. Here we show that ZIP disrupts LTP by removing surface AMPA receptors through its cationic charge alone.

View Article and Find Full Text PDF

Transmembrane AMPA receptor regulatory proteins (TARPs) are claudin-like proteins that tightly regulate AMPA receptors (AMPARs) and are fundamental for excitatory neurotransmission. With cryo-electron microscopy (cryo-EM) we reconstruct the 36 kDa TARP subunit γ2 to 2.3 Å, which points to structural diversity among TARPs.

View Article and Find Full Text PDF

Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!