Unlabelled: OBJECTIVE AND SCOPE: This review article used data from an extensive literature search (including MEDLINE database searches) to explore the relationships between sleep, memory and Alzheimer's disease (AD). The importance of taking into account circadian rhythmicity and acetylcholine (ACh) levels when considering acetylcholinesterase inhibitors, galantamine in particular, in the treatment of patients with AD is discussed.
Review Findings: Moderate changes of circadian rhythms may occur as part of the normal ageing process, but patients with AD exhibit circadian rhythm disturbances extending beyond those observed in non-demented elderly and this may lead to severe disruption of the sleep-wake cycle. Indeed, ACh plays an active role in maintaining a normal sleep pattern, which is important for memory consolidation. Low levels of ACh during slow-wave sleep compared with wakefulness have been shown to be critical for the consolidation of declarative memory. This suggests the existence of a circadian rhythm in central cholinergic transmission which modulates memory processes, with high ACh levels during wakefulness and reduced levels during slow-wave sleep. When using cholinesterase inhibitors to stimulate central cholinergic transmission in AD, respecting the natural circadian fluctuations of central cholinergic transmission may therefore be an important factor for patient improvement. Interfering with nocturnal cholinergic activity can add to memory problems and induce sleep disorders. Available data suggest that the type of cholinesterase inhibitor used and the time of administration may be critical with regard to the possible development of such disturbances. Plasma levels of galantamine, for example, are high during the waking day and lower at night, supporting a cholinergic stimulation that mirrors the physiological circadian rhythm of cholinergic activity. This may have beneficial implications with regard to sleep and memory.
Conclusions: The pharmacokinetic properties of cholinesterase inhibitors may need to be taken into account to avoid interference with sleep architecture and to achieve optimum benefits from treatment on cognitive processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1185/03007990802522397 | DOI Listing |
J Neural Transm (Vienna)
January 2025
Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, Essen University Medical School, University of Duisburg-Essen, 45147, Essen, Germany.
Attention-deficit/hyperactivity disorder (ADHD) is a frequently observed condition, with about 70% of individuals diagnosed with ADHD experiencing irregular sleep-wake patterns. Beyond the primary symptoms of ADHD, there is a significant overlap with sleep-related issues, indicating that disrupted sleep patterns may exacerbate ADHD symptoms. ADHD-related sleep problems can be traced to a delayed circadian rhythm and a later onset of melatonin production.
View Article and Find Full Text PDFActa Cardiol
January 2025
Postgraduate Program of Rehabilitation Sciences, Centro Universitário Augusto Motta/UNISUAM, Rio de Janeiro, RJ, Brazil.
Sci Rep
January 2025
Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
The study of circadian rhythms has been critically dependent upon analysing mouse home cage activity, typically employing wheel running activity under different lighting conditions. Here we assess a novel method, the Digital Ventilated Cage (DVC, Tecniplast SpA, Italy), for circadian phenotyping. Based upon capacitive sensors mounted under black individually ventilated cages with inbuilt LED lighting, each cage becomes an independent light-controlled chamber.
View Article and Find Full Text PDFPhysiol Behav
January 2025
Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, PB, Brazil. Electronic address:
The T22 protocol is an animal model of forced internal desynchronization, in which rats are exposed to an 11:11 light-dark (LD) cycle. This non-invasive protocol induces the dissociation of circadian rhythms in adult rats, making it possible to study the effects of circadian disruption on physiological and behavioral processes such as learning, memory, and emotional responses. However, the effects of circadian dissociation during other developmental stages, such as adolescence, remain unexplored.
View Article and Find Full Text PDFPlant Cell
December 2024
Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA.
In Arabidopsis (Arabidopsis thaliana), light and circadian clock signaling converge on PHYTOCHROME-INTERACTING FACTORS (PIFs) 4 and 5 to produce a daily rhythm of hypocotyl elongation. PIF4 and PIF5 expression is repressed at dusk by the evening complex (EC), consisting of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO (LUX). Here, we report that ELF3 recruits the JUMONJI (JMJ) H3K4me3 demethylases JMJ17 and JMJ18 to the PIF4 and PIF5 loci in the evening to remove their H3K4me3 marks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!